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Director General's preface 

 
Estimation in the Presence of Nonresponse and Frame Imperfections has 
been prepared as a Current Best Methods (CBM) manual, within the 
framework of quality improvement work at Statistics Sweden. It offers a 
review of effective methods to reduce the influence of nonresponse in 
statistical surveys, together with recommendations for their use. The manual 
will be used in production processes at Statistics Sweden and also has 
evident applications throughout the whole system of Swedish official 
statistics. 
 
Svante Öberg 
 

Authors' preface 

Nonresponse has been a matter of concern for several decades in the 
relatively short history of survey theory and practice. As is especially 
apparent in the recent literature, the problem is viewed from two different, 
but complementary, angles: the prevention or avoidance of nonresponse 
before it occurs, and the special estimation techniques required once 
nonresponse has occurred. 
 
The first angle is covered in Statistics Sweden (1997), a CBM manual 
entitled  Minska Bortfallet  (Reduce the Nonresponse). The second angle is 
examined in the present CBM manual. The two principal approaches for 
nonresponse adjustment, reweighting and imputation, are explained and 
illustrated. Also covered are some guidelines for dealing with a related set of 
problems, frame imperfections and coverage errors. 
 
In writing this CBM we benefited greatly from a reading group, whose 
members commented on two preliminary versions of this document. The 
group consisted of experienced statisticians at Statistics Sweden: Claes 
Andersson, Stefan Berg, Claes Cassel, Jan Hörngren, Pär Lindholm, Peter 
Lundqvist, Lennart Nordberg, Jan Selén, Sara Tångdahl, Peter Vorverk. We 
gratefully acknowledge their contributions. 
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In Sweden as in many other countries, the practice of imputation is linked to 
legal aspects of the use of constructed variable values. Restrictions apply to 
the inclusion of such values in data files, particularly files on individuals. 
The material on imputation, especially Chapter 7, reflects these concerns 
relating to respondents' rights and the protection of privacy. In particular, 
Section 7.4 was written in consultation with Statistics Sweden's chief legal 
advisor, Birgitta Pettersson. We gratefully acknowledge this cooperation. 
 
 
Örebro and Ottawa,  
July, 2001,   
Sixten Lundström 
Carl-Erik Särndal 



Contents 

5 

Contents  

Director General's preface 3 

Contents 5 

1. Introduction 9 

2. The survey and its errors 13 
2.1. Terminology 13 
2.2. A discussion of sources of error 17 

3. Nonresponse adjustment 27 
3.1. Introduction 27 
3.2. The importance of auxiliary information 29 

4. Estimation under ideal conditions 41 
4.1. Introduction 41 
4.2. The Horvitz-Thompson estimator 45 
4.3. The generalised regression estimator 45 
4.4. Variance and variance estimation 48 
4.5. Examples of the generalised regression estimator 51 

5. Introduction to estimation in the presence of nonresponse 57 
5.1. General background 57 
5.2. Error caused by sampling and nonresponse 59 

6. Reweighting for nonresponse 63 
6.1. Background and conventional methods for reweighting 63 
6.2. Introduction to the calibration approach 65 
6.3. Point estimation under the calibration approach 66 
6.4. Variance estimation under the calibration approach 70 
6.5. Software for computing point estimates and variance estimates 72 
6.6. Examples of calibration estimators 74 

7. Imputation 83 
7.1. Introduction 83 

7.1.1. Types of imputed values 83 
7.1.2. The objective of imputation 85 
7.1.3. The completed data set 86 

7.2. Point estimation when imputation is used 87 
7.2.1. The estimator 87 



Contents 

6 

7.2.2. Statistical rules versus expert judgment 88 
7.2.3. Imputation practices based on a statistical rule 90 

7.3. Variance estimation when imputation is used 97 
7.3.1. Why the “standard variance formula” is misleading when 
imputation is used 97 
7.3.2. The framework for evaluating bias and variance 100 
7.3.3. The use of standard software for variance calculation 101 
7.3.4. Estimating the sampling variance component 102 
7.3.5. Approaches to estimating the nonresponse variance 104 
7.3.6. Expressions for the nonresponse variance estimate in some 
special cases 106 

7.4. When is imputation allowed? 108 

8. Comparing reweighting and imputation: Which is  
preferable? 111 

8.1. Introduction 111 
8.2. Practical considerations 112 
8.3. Statistical considerations 114 

9. The treatment of item nonresponse 117 

10. Selecting the most relevant auxiliary information 119 
10.1. Discussion 119 
10.2. Guidelines 121 

10.2.1. Introduction 121 
10.2.2. Analysis of the nonresponse bias for some well-known 
estimators 122 
10.2.3. Which grouping is optimal? 127 
10.2.4. A further tool for reducing the nonresponse bias 131 
10.2.5. More extensive auxiliary information 132 

10.3. Literature review 132 

11. Estimation in the presence of nonresponse and  
frame imperfections 139 

11.1. Introduction 139 
11.2. Estimation of the persistor total 142 

11.2.1. Point estimation 142 
11.2.2. Variance estimation 145 

11.3. Direct estimation of the target population total 146 
11.3.1. Introduction 146 
11.3.2. Point estimation 147 
11.3.3. Variance estimation 148 



Contents 

7 

APPENDIX A. Components of the total variance: Sampling  
variance and nonresponse variance 151 

APPENDIX B. Proxies of the unknown response  
probabilities to be used in the variance estimator 154 

APPENDIX C. A general expression for the nonresponse  
bias for the calibration estimator 156 

APPENDIX D. Cases where imputation and reweighting  
result in the same estimator 161 

References 165 

INDEX of important terms 169 
 
 



Contents 

8 

 
 



1. Introduction 

9 

1. Introduction 

This document is one in a series of Current Best Methods (CBM) manuals 
produced in recent years at Statistics Sweden. Their objective is to present in 
easily accessible form those techniques that are viewed as “best” for a given 
aspect of the statistical production process. They are intended as guides for 
survey statisticians in survey design, redesign and maintenance. Although 
produced mainly for statisticians at Statistics Sweden, they can also provide 
useful information for many other readers. 
 
Nonresponse has long been a matter of concern in surveys. In the recent 
literature, the problem of nonresponse is viewed from two different (but 
complementary) angles: the prevention or avoidance of nonresponse before 
it has occurred, and the special techniques required in estimation when 
nonresponse has occurred.  
 
The methods for prevention draw on knowledge from the behavioural 
sciences. This is natural because the data collection involves establishing 
contact with respondents, overcoming respondent scepticism and promoting 
a positive attitude to the survey. Motivational factors play an important role. 
Adjustment for nonresponse once it has occurred, on the other hand, draws 
on knowledge primarily from estimation theory. The reasoning is of a 
mathematical/statistical nature. 
 
Both producers and users of statistics are well aware that nonresponse can 
have a negative impact on the quality of statistics. Considerable resources 
are therefore spent on improving data collection procedures, so as to prevent 
nonresponse from occurring. Research in this area is intensive and is 
reported in numerous articles. Some statistical agencies have their own 
guidelines for effective data collection, see, for example, Statistics Sweden 
(1997). Nevertheless, once data collection is concluded, one has to accept 
some, perhaps even considerable, nonresponse. 
 
Nonresponse error is the most publicized of the “nonsampling errors”, that 
is, those errors attributed to causes other than the limitation of the 
investigation to a sample only, rather than the entire population. There exists 
an enormous literature on the topic.  
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In a perfect world, a survey has no nonresponse; all selected elements will 
participate and provide all of the requested data. However, today's reality is 
very different. Missing data due to nonresponse is a normal although 
undesirable feature of any survey. 
 
The objective of this CBM is to give an up-to-date account of methods of 
estimation for use when data collection has been “disturbed” by 
nonresponse. Nonresponse adjustment is not treated as an isolated issue. We 
embed nonresponse adjustment in the broader context of estimation. The 
issue is how to make the best possible estimates based on the data collected 
from those who respond to the survey, and on any relevant auxiliary 
information that one may have about the population and its elements, 
whether respondents or nonrespondents. 
 
The title of this CBM reads “Estimation in the presence of nonresponse ... ” 
and continues “ ... and frame imperfections”. These last few words refer to 
issues closely related to nonresponse and missing data, namely, frame errors 
(or coverage errors). Frame undercoverage, in particular, is discussed in the 
concluding Chapter 11, though we do not provide an exhaustive treatment of 
this difficult problem on which the literature has remained comparatively 
silent. 
 
This CBM is written for employees (“handläggare”) at Statistics Sweden, 
and in particular for its survey methodologists. The background required to 
understand the contents is not uniform throughout the document. The degree 
of technical difficulty can be described as follows.  
 
Chapters 2 and 3 are written as a wholly non-technical overview. They 
present the main issues and outline general approaches to the treatment of 
nonresponse without going into technical arguments or specific solutions. 
Chapters 2 and 3 can be read with only a rudimentary background in 
statistical science. 
 
More specific practical advice is presented in Chapters 4 to 11, which can be 
described as moderately technical. In order to well assimilate the material in 
Chapters 4 to 11, it should be sufficient to have a level of preparation 
corresponding to the C-level in statistics or mathematical statistics in the 
Swedish university system. 
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Appendices A to D contain mathematical and other technical material, 
including derivations and proofs of certain results stated in the preceding 
chapters. The appendices need not be read or understood in order to apply 
the methods explained in Chapters 4 to 11.  
 
A statistician who is not actively involved in survey methodology work can 
easily read Chapters 2 and 3 as a general orientation, and should be able to 
follow parts of the subsequent chapters. An active survey methodologist 
should be able to read the whole document. 
 
How should this CBM be used? It is not a handbook in the strict sense of the 
term. In other words, one should perhaps not hope to open this CBM at a 
certain page and find a tailor-made answer to a specific problem 
encountered in a survey. What the CBM does provide is a range of 
techniques commonly used for resolving issues arising from nonresponse. 
The survey statistician should always be prepared to adapt the techniques in 
this CBM to fit the environment of his/her own survey. This often requires a 
certain familiarity with statistical derivation techniques, including 
probabilistic evaluations of expected values and variances, and other tasks 
that survey methodologists are accustomed to performing. 
 
This document is not the first on nonresponse produced at Statistics Sweden. 
A predecessor is the 1980 publication “Räkna med bortfall”, a title that can 
be translated in two different ways: “You can count on some nonresponse” 
and “Computing in the presence of nonresponse”. This publication was one 
of the products resulting from a large project undertaken at Statistics 
Sweden in the late 1970s, as a reaction of senior management to what were 
then considered “alarmingly high nonresponse rates” – rates that would be 
modest or almost insignificant in today's hardened survey climate. 
Nonresponse methodology has undergone considerable technical 
development since 1980, and the present document reflects these 
developments. 
 
One important practical issue not discussed in this CBM is the following 
budgetary aspect: at a statistical agency, available resources must be split 
between (i) efforts to avoid nonresponse, and (ii) efforts to get high quality 
estimates despite nonresponse. The literature does not offer very concrete 
advice on this issue, nor is it covered in this CBM. The negative effects of  
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nonresponse on the quality of estimates can vary considerably from one 
survey to another. Costly attempts to reach a token minimum survey 
response rate, such as 80%, may not be the best use of the available 
resources. 
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2. The survey and its errors 

2.1. Terminology 

This CBM discusses issues arising in surveys carried out by national 
statistical institutes, such as Statistics Sweden. The objective of a survey is 
to provide information about unknown characteristics, called parameters, of 
a finite collection of elements, called a population (for example, a 
population of individuals, of households, or of enterprises). A typical survey 
involves many study variables and produces estimates of different types of 
parameters, such as the total or the mean of a study variable, or the ratio of 
the totals of two study variables. Sometimes different kinds of elements are 
measured in the same survey, as when both individuals and households are 
observed. Many surveys are conducted periodically, for example, monthly or 
yearly, and one of the objectives is then to get accurate measures of the 
change in a variable between two survey occasions. 
 
The origin of a survey is usually that a government or some other users 
express a need for information about a social or economic issue, and that 
existing data sources are insufficient to meet this need. The first step in the 
planning process is to determine the survey objectives as clearly and 
unambiguously as possible. The next step, referred to as survey design, is to 
develop the methodology for the survey. 
 
Survey design involves making decisions on a number of future survey 
operations. The data collection method must be decided upon, a 
questionnaire must be designed and pretested, procedures must be set out for 
minimizing or controlling response errors, the sampling method must be 
decided on, interviewers must be selected and trained (unless self-
administered questionnaires are used), the techniques for handling 
nonresponse must be decided on, and procedures for tabulation and analysis 
must be thought out. 
 
A survey will usually encounter various technical difficulties. No survey is 
perfect in all regards. The statistics that result from the survey are not error-
free. The frame from which the sample is drawn is hardly ever perfect, so 
there will be coverage errors. There will be sampling error whenever 
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observation is limited to a sample of elements, rather than to the entire 
population. Also, no matter how carefully the survey is designed and 
conducted, some of the desired data will be missing, because of refusal to 
provide information or because contact cannot be established with a selected 
element. Since nonresponding elements may be systematically different 
(have larger or smaller variable values, on average) than responding 
elements, there will be nonresponse error. 
 
These three types of error – sampling error, nonresponse error and coverage 
error – are discussed at length in this CBM. It is true that a survey will 
usually also have other imperfections, such as measurement error and coding 
error. These errors are not discussed. 
 
Sub-populations of interest are called domains. If the survey is required to 
give accurate information about many domains, a complete enumeration of 
these domains may become necessary, especially if they are small.  
 
The survey planner will probably first consider whether statistics derived 
from available administrative registers could satisfy the need for 
information. If not, a census (a complete enumeration of the population) 
may have to be conducted. If all domains of interest are at least moderately 
large, a sample survey may give statistics of sufficient accuracy. 
 
These three different types of survey (survey based on administrative 
registers, census survey, sample survey) differ not only in the extent to 
which they can produce accurate information for domains, but also in other 
important respects. For example, sample surveys have the advantage of 
yielding diverse and timely data on specified variables, whereas statistics 
derived from administrative registers, although perhaps less expensive, may 
give information of limited relevance, because except in very fortunate 
cases, available registers are not designed to meet the specific information 
needs. On the other hand, a census might provide the desired information 
with great accuracy, but is very expensive to conduct. For a discussion of 
these issues, see Kish (1979). 
 
Most of the issues raised in the following apply to all three types of survey. 
But often, we will have in mind a sample survey. Therefore, the term 
“survey” will usually refer to “a sample survey”. We will now review some 
frequently used survey terminology. 
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A survey aims at obtaining information about a target population. The 
delimitation of the target population must be clearly stated at the planning 
stage of the survey. The statistician's interest does not lie in publishing 
information about individual elements of the target population (such 
disclosure is often ruled out by law), but in providing descriptive measures 
(totals or functions of totals) for various domains, that is, for various 
aggregates of population elements. 
 
These unknown quantities are called parameters or parameters of interest. 
For example, three important objectives of a Labour Force Survey (as 
conducted in most industrialized countries) are to get information about  (i) 
the number of unemployed,  (ii) the number of employed,  (iii) the 
unemployment rate. These are examples of parameters. The first two 
parameters are population totals. The third is a ratio of population totals, 
namely, the number of unemployed persons divided by the total number of 
persons in the labour force. 
 
Examples of other population parameters are population means – for 
example, mean household income – and regression coefficients – say, the 
regression coefficient of income (dependent variable) regressed on number 
of years of formal education (independent variable), for a population of 
individuals.  
 
We can estimate any of these parameters with the aid of data on the 
elements of a probability sample from the population. We then assume that 
all sampled elements are measured for the variables whose totals define the 
parameter of interest.  
 
The sample is drawn from the frame population, that is, the set of all 
elements that could possibly be drawn. The frame population and the target 
population are not always identical. 
 
Sampling design is used as a generic term for the (usually probabilistic) rule 
that governs the sample selection. Commonly used sampling designs are: 
simple random sampling (SRS), stratified simple random sampling 
(STSRS), cluster sampling, two-stage sampling, and Poisson sampling. With 
the possible exception of SRS, these designs require some planning before 
sampling is carried out. STSRS requires well-defined strata composition. 
Cluster sampling requires a decision on what clusters to use. Two-stage 
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sampling requires that we define the first stage sampling units (the psu's) 
and the second stage elements (the ssu's). 
 
Every sampling design involves two other important general concepts:  (i) 
inclusion probabilities and  (ii) design weights. The inclusion probability of 
an element is the probability with which it is selected under the given 
sampling design. The design weight of an element is the inverse of its 
inclusion probability. The sampling design may generate different 
probabilities of selection for different elements. In SRS and STSRS with 
proportional allocation, all inclusion probabilities are equal, but this is not 
the case in general. 
 
The inclusion probability can never exceed one. Consequently, a design 
weight is greater than or equal to one. The inclusion probability (and the 
design weight) is equal to one for an element that is selected with certainty. 
Many business surveys include a number of elements (usually very large 
elements) that are “certainty elements”. These form a sub-group often called 
a take-all stratum.  
 
A majority of the elements have inclusion probabilities strictly less than one. 
For example, in an STSRS design, an element belonging to a stratum from 
which 200 elements are selected out of a total of 1600 has an inclusion 
probability equal to the sampling rate in the stratum, 200/1600 = 0.125, and 
its design weight is then 1/0.125 = 8. One interpretation often heard is that 
“an element with a design weight equal to 8 represents itself and seven other 
(non-sampled, non-observed) population elements as well”. When it comes 
to estimation, the observed value for this element is given the weight 8. 
Another stratum in the same survey may have 100 sampled elements out of a 
total of 200. Each element in this stratum has the inclusion probability 
100/200 = 0.5, and its design weight is then 1/0.5 = 2. 
 
At Statistics Sweden, STSRS is used in a number of surveys. In particular, it 
is used in surveys of individuals and households, because the Swedish Total 
Population Register (see Example 2.2.1) contains a number of variables 
suitable for forming strata, such as age, sex and geographical area. It is often 
of interest to measure households as well as individuals in the same survey. 
We obtain a random sample of households from the random sample of 
individuals by identifying the households to which the selected individuals 
belong. 
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In business surveys, the distribution of the variables of interest is often 
highly skewed. The “giants” in an industry account for a major share of the 
total for a typical study variable such as industrial production. The largest 
elements (enterprises) must be given a high inclusion probability 
(probability one or very near to one). Many business surveys use coordinated 
sampling for small enterprises to distribute the response burden. This entails 
some control over the frequency with which an enterprise is asked to 
provide information over a period of time, say a year. In Sweden the JALES 
technique (see Atmer, Thulin and Bäcklund, 1975) is used for coordinated 
sampling.  
 
The JALES technique and similar coordinated sampling techniques are 
based on permanent random numbers. “Permanent” means that a uniformly 
distributed random number is attached at birth to a statistical element (an 
enterprise), and remains with that element for the duration of its life. 
 

2.2. A discussion of sources of error 

In this section we discuss frame imperfections, sampling and nonresponse. 
Figure 2.2.1 is designed to support the discussion.  
 
  
  
 
 
rp
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Frame imperfections 

We define the target population as the set of elements that the survey aims 
to encompass at the time when the questionnaire is filled in. This point in 
time is called the reference time point for the target population. The 
sampling frame is usually constructed at an earlier date, sometimes as much 
as twelve months earlier; this time point is referred to as the reference time 
point for the frame population. The lag between the two time points should 
be as short as possible, because the risk of coverage errors increases with the 
time lag. Three types of coverage error are commonly distinguished: 
undercoverage, overcoverage, and duplicate listings. We will now comment 
in particular on the first two of these. As the name suggests, duplicate 
listings refer to the type of errors occurring when a target population element 
is listed more than once in the frame. 
 
Elements that are in the target population but not in the frame population 
constitute undercoverage. Especially in business surveys, a significant part 
of the undercoverage is made up of elements that are new to the target 
population but are not present in the frame population. These are commonly 
referred to as “births”. Undercoverage may, of course, also have other 
causes. 
 
Elements that are in the frame population but not in the target population 
constitute overcoverage. Elements that have ceased to exist somewhere 
between the two reference time points can be a significant source of 
overcoverage. These elements are often referred to as “deaths”. 
 
It follows that undercoverage elements have zero probability of being 
selected for any sample drawn from the frame population. This is an 
undesirable feature, because if the study variable values differ systematically 
for undercoverage elements and other population elements, there is a risk of 
biased estimates. Bias from overcoverage can usually be avoided if it is 
possible to identify the sample elements that belong to the overcoverage. 
One procedure is to treat these elements as a special domain. However, it is 
usually impossible to correctly classify all sample elements as belonging 
either to the target population or to the overcoverage. The problem becomes 
particularly acute for nonresponding elements, and biased estimates can be 
the result. 
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Attempts are usually made to keep the lag between the frame population 
reference time point and the target population reference time point as short 
as possible, but nevertheless, for practical reasons, the time lag is sometimes 
considerable. One reason may be slowness in the updating of the frame. The 
result of events that motivate a change or update of frame information is 
sometimes recorded only after a considerable delay. Births and deaths are 
examples of events that need to be recorded. Such events entail a change in 
the set of elements in the frame. Another example is a change in a variable 
value for an element existing in the frame, e.g. when updated information is 
received about the number of employees or the gross business income of an 
enterprise. It follows that the values recorded for a given frame variable may 
refer to different time points for different frame elements. This is not ideal, 
but it is a reality that has to be accepted. 
 
The frame population for a given survey is sometimes created from a larger, 
more extensive set of elements, each having recorded values for a number of 
variables. An appropriate frame population for the survey is then constructed 
from this larger frame, using some of the variables as a tool for the 
delimitation process. Errors in the recorded variable values due to different 
reference times or other causes may detract from the effectiveness of the 
delimitation. Also, frame variables are often used before sampling for 
stratifying the population and/or after sampling for poststratifying the 
sample. Again, imperfect frame variable values may impede the efficiency 
of these important practices. 
 
EXAMPLE 2.2.1. The Total Population Register. 

The Total Population Register (TPR) aims to achieve a complete listing of 
the Swedish population. Register variables recorded for every person 
include the unique Personal Identity Number (PIN), name and address. This 
makes it possible to access every person for a broad range of surveys. The 
addresses are classified by Swedish administrative regions, such as counties 
(“län”) and municipalities. Every piece of real estate is identified in the TPR 
by co-ordinates, which makes it possible to construct regions other than 
counties and municipalities. Other important register variables are date of 
birth, sex, civil status, country of birth and taxable income. Information 
about births, deaths, immigration, emigration and changes of other register 
variables is received by Statistics Sweden continuously, so in principle the 
register can be kept almost perfectly up-to-date. Persons arriving from 
abroad and intending to stay at least one year are entered in the register after 
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the necessary permission has been granted. Since this may take some time, 
the TPR at any given point in time has some undercoverage, i.e., persons 
who properly belong to the Swedish population but are not yet entered in the 
register. The information about births is almost error-free. There is also 
some overcoverage, i.e., persons in the TPR but not (or no longer) in the 
Swedish population. This overcoverage, estimated to be around 0.4% of the 
entire population, is made up essentially of persons who have emigrated 
from Sweden without notification for removal from the TPR. Since the PIN 
is unique, duplicates do not occur in the TPR. 

� 
 
EXAMPLE 2.2.2.  The Business Register. 

Every second week, Statistics Sweden's Business Register (BR) Programme 
receives information from the National Tax Board about births and deaths of 
enterprises. The births can be divided into three categories, namely, (i) pure 
births, that is, enterprises generated by new business activity; (ii) births 
occurring because of reorganisation, as when an existing enterprise is split 
into several entities; (iii) births arising because of a registration of a new 
legal form. SOS (1998) shows that out of the enterprises that were births in 
1997, only 54% belonged to group (i). For the remaining 46%, in particular, 
there may be identification difficulties, which can give rise to duplicates. 
The BR contains two important variables for every enterprise, namely, the 
Standard Industrial Classification (SIC) code and the number of employees. 
The information for updating these variables comes from several different 
sources, relating to different subsets of the BR, so at any given point in time, 
the most recent variable values do not refer to the same point in time.  
 
The BR is an ideal source for establishing sampling frames only a few times 
a year. Many changes in business structure are registered at the turn of a 
calendar year. Furthermore, in November/December every year, all 
enterprises with two or more local units are updated in a specific survey (the 
“PAYE survey”). All this information is processed between January and the 
middle of March. For this reason, March is a suitable time to establish a 
sampling frame. The end of May is another suitable time because fresh data 
from the PAYE register arrive at that time. By the middle of August, results 
arrive from the “BR survey”, which is a large survey carried out by Statistics 
Sweden's Business Register unit. Its purpose is to update information on SIC 
code and size for all enterprises with two or more local units. Finally, 
November is the traditional time to establish frames for most of the annual 



2 The survey and its errors 

21 

surveys. By this time the BR also contains new information on SIC code for 
units in manufacturing. The annual commodity survey is the source used for 
this update. Hence, new sampling frames are produced every March, May, 
August and November, based on the BR as it exists at those different points 
in time.    

� 
Sampling 

The basic procedure for estimating a population total consists in summing 
weighted variable values for the elements that happened to be in the sample. 
Under the assumption of 100% response, this gives an unbiased estimator of 
the population total in question. This point estimator is called the Horvitz-
Thompson (HT) estimator; see (4.2.1). 
 
A more advanced point estimator is the generalised regression (GREG) 
estimator; see (4.3.1). This uses a more sophisticated weighting. GREG 
point estimates are computed as the sum (again for the elements in the 
sample) of the weighted observed values, where the weight of an observed 
value is the product of two sub-weights, the design weight and the  g-
weight; see (4.3.4). The latter weight is computed with the aid of the 
available auxiliary information. A simple form of  g-weights familiar to 
many statisticians is poststratification weights. 
 
We have already stated that many parameters of interest in a survey are more 
complex than simply one population total. They can often be expressed as a 
function of two or more population totals. There is a simple principle for 
estimating a function of totals: to replace each unknown population total by 
its HT estimator or by the GREG estimator. For example, to estimate the 
population mean for a characteristic  y, we compute the estimate of the 
population total for  y  and divide it by the estimate of the population size 
(which is known in some surveys). 
 
The variance of an estimator is the average of the square of the deviation of 
the estimator from its central value (its mean). This average is with respect 
of all possible samples that can be drawn using the given sampling design. 
Since each of these samples has a known probability, determined by the 
sampling design, we can derive the variance. It is important to note that 
variance is measured as “variability over all possible samples”. But in 
practice we never draw all possible samples; we draw just one single 
sample. Variance, therefore, is an unknown quantity. But it is one that we 
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would very much like to quantify, by performing a computation based on the 
data we have. This is what variance estimation does. 
 
When statisticians speak about sampling error they mean the error caused 
by the fact that values of a study variable are recorded only for a sample of 
elements, not for all elements of the population. If the whole population 
were indeed observed, the sampling error would be zero. This situation is 
exceptional. (There could be other errors, for example, measurement error 
and nonresponse error, but the sampling error would be zero.) Statisticians 
usually measure “error” by a variance. Hence, the sampling error is 
measured by the variance of the estimator in use, assuming that there are no 
other errors.  
 
The variance of an estimator cannot be computed because it depends on data 
for the whole population. We must estimate the variance with the aid of the 
data available, namely, the observed values of the sampled elements. (When 
this is possible the sampling design is said to be measurable.) We attempt to 
do this so that the variance estimator is (almost) unbiased. 
 
The estimated variance is used in confidence interval calculation. The 
familiar procedure for obtaining a confidence interval at (roughly) the 95% 
level is to compute the end points of the interval as: point estimate plus or 
minus 1.96 times the estimated standard deviation. The estimated standard 
deviation is defined as the square root of the estimated variance of the 
estimator.   
 
CLAN97 is a computer software constructed at Statistics Sweden. Its most 
current version is described in Andersson and Nordberg (1998). It is 
designed to compute point and standard error estimates in sample surveys. It 
can be adapted to most sampling designs in current use at Statistics Sweden, 
and is focused on the HT and GREG estimators; see Chapter 4. This gives 
CLAN97 wide flexibility. It is also possible to build nonresponse 
adjustments into the variance calculation in CLAN97; see Section 6.5. We 
discuss this process in more detail in the following sections of this CBM. 
 
Another computer software is Statistics Canada's Generalized Estimation 
System (GES). The theoretical underpinnings are very similar to those of 
CLAN97; see Estevao, Hidiroglou and Särndal (1995).  
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Nonresponse 

Considerable resources are spent on improving data collection procedures, 
so as to prevent nonresponse from occurring. Nevertheless, once data 
collection is concluded, one has to accept some, perhaps even considerable, 
nonresponse. A 20% nonresponse rate is common, and in many surveys it is 
much higher, as Table 2.2.1 illustrates. One alarming fact is that 
nonresponse rates are on the increase in many surveys and many countries.  
 
Table 2.2.1. Nonresponse rates (unweighted) in per cent for some surveys at 
Statistics Sweden in the year 2000. 
 
a) Business surveys Nonresponse 

rate 
Credit Market Statistics 5.5 
Quarterly Survey of  Income and Expenditures for 
municipalities 

9.0 

Foreign Trade Credits 8.5 
Energy Statistics for Non-Residential Premises 19.0 
Business Investments  17.0 
Swedish National and International Road Goods Transport 27.2 
Turnover in Domestic Trade and Certain Service Activities 19.8 
b) Surveys on individuals 
 
Energy Statistics for One- and Two-Dwelling Buildings 20.0 
Income Distribution Survey 25.5 
Labour Force Survey 15.1 
Party Preference Survey 24.5 
Swedish Survey of Living Conditions 22.6 
Consumer Buying Expectations  32.9 
Surveys of Receipts and Costs of Multi-Dwelling Buildings 21.0 
Energy Statistics for Multi-Dwelling Buildings 22.0 
Transition from Upper Secondary School to Higher Education 28.0 
 
In surveys on individuals there is a vast literature illustrating the distribution 
of nonresponse with respect to basic variables such as age, sex, and region. 
Experience gathered from these nonresponse analyses shows that, for 
surveys on individuals, lower response rates are usually expected for 
metropolitan residents, single persons, members of childless households, 
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older persons, divorced or widowed persons, persons with lower educational 
attainment, and self-employed persons; see Holt and Elliot (1991) and 
Lindström (1983). Similar studies have been reported for business and 
establishment surveys, showing how the response rate varies between 
different sub-groups of the population; see Groves and Couper (1993). We 
return to this topic in Chapter 10. 
 
Since variables such as age, sex and region often co-vary with many social 
survey study variables, the nonresponding elements are likely to be atypical 
with respect to these variables, leading to nonresponse bias in the estimates. 
Another effect of nonresponse is an increase in the variance of estimates, 
because the effective sample size is reduced. This can be counteracted by 
some degree of “oversampling”, so that the sample size is fixed at the design 
stage at an appropriately “higher-than-normal” rate. A slight drawback may 
then be some increase in administrative burden, postage fees, and so on. 
Another problem, although relatively minor, is that if the desired sample is 
allocated to strata in an optimal fashion, the resulting allocation of 
responding elements may not be optimal. 
 
As we have noted, a survey may contain many study variables. In some 
surveys, it is possible to obtain data on some of these variables from 
available registers, called register variables in what follows; these sources 
will almost always show data on all variables and all elements, so no data 
will be missing. For the other study variables, called questionnaire variables 
in what follows, one may have to rely on data collected by questionnaire or 
by other means, and these data will be affected by some nonresponse. It is 
customary to distinguish two types of nonresponse, unit nonresponse and 
item nonresponse. A unit nonresponse element is one for which information 
is missing on all the questionnaire variables. An item nonresponse element 
is one for which information is missing on at least one, but not all, of the 
questionnaire variables. The set of elements with a recorded response on at 
least one questionnaire item will be called the response set. These concepts 
are illustrated by the following example. 
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EXAMPLE 2.2.3.  Unit nonresponse, item nonresponse and response set. 

The following table illustrates the result of a (hypothetical) data collection in 
a survey with 8 sampled elements. The symbol  x  indicates a presence of 
data, nr  indicates that data are missing.  
 
Identity Register variables  Questionnaire variables   
 1 2 1 2 3 

1 x x x x x 
2 x x x x nr 
3 x x x nr x 
4 x x x x x 
5 x x x x x 
6 x x nr x nr 
7 x x nr nr nr 
8 x x nr nr nr 

 
Although all 8 sample elements have data for the two register variables, we 
shall say that elements 7 and 8 constitute the unit nonresponse, because 
neither of these has any response in the questionnaire part of the survey. 
Elements 1 to 6, which have values recorded for at least one questionnaire 
item, form the response set in this example.  

� 
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3. Nonresponse adjustment 

3.1. Introduction 

Nonresponse adjustment is a collective term for the various attempts made 
by statisticians to deal with nonresponse once it has occurred, that is, after 
an acceptance of the fact that some desired data will be missing. As the 
word “adjustment” suggests, changes are made to an original or “ideal” 
estimation procedure, namely, the one intended for use in the ideal case of 
100% response. The principal methods for nonresponse adjustment are 
reweighting and imputation.  
 
Reweighting entails altering the weights of the respondents, compared to the 
weights that would have been used in the case of 100% response. Since 
observations are lost by nonresponse, reweighting will imply increased 
weights for all, or almost all, of the responding elements. In this CBM, 
reweighting is treated by a general approach, the calibration approach, 
which has the favourable property of incorporating most “standard” methods 
found in different places in the literature; see Section 6.6.  
 
Imputation entails replacing missing values by proxy values. The statistician 
can choose to use imputation for item nonresponse only and then treat unit 
nonresponse by reweighting. We call this alternative the ITIMP-approach. 
The other alternative is to impute values for the item nonresponse as well as 
for the unit nonresponse. We call this the UNIMP-approach. Different 
imputation methods, and the “imputed estimators” that they lead to, are 
discussed in Section 7.2. 
 
Remark 3.1.1.  Imputation may be disallowed for legal reasons. Some 
countries prohibit imputation, at least for some categories of observed 
elements. Information on legal aspects in Sweden is given in Section 7.4.  

� 
 
EXAMPLE 3.1.1.  Illustration of sampling error and nonresponse bias, 
assuming a perfect frame. 

In order to illustrate certain nonresponse adjustment procedures we 
constructed an artificial population of size N = 34,478 composed of 17,062 
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men and 17,416 women. The data came from the Income Distribution 
Survey 1999  and the study variable value ky   represents the sum of total 

earned and capital income of person k. The mean value was 196,592 for men 
and 135,689 for women.  
 
Suppose we want to estimate the total  ∑= U kyY   under the following 

survey conditions. An SRS of size 400 is drawn, and a response mechanism 
then operates in such a way that all males respond with probability 0.5 and 
all females with probability 0.9. The response set has a size of around 281 
and will tend to strongly overrepresent women, compared to the more 
natural male/female distribution found in the desired SRS sample. Assume 
that we use the expansion estimator, given by (6.6.1), to estimate the total 
income. This estimator formula implies essentially that we treat the response 
set as a simple random selection from the population, which is, of course, 
wrong under these circumstances. Consequently, the estimates derived with 
this formula will be biased. We drew 100 SRS samples, and for each of 
these, a response set was realised by the response mechanism mentioned. 
The results are given in the following figure, which illustrates both the 
sampling error and the nonresponse bias. The horizontal axis represents the 
numbering, from 1 to 100, of the response sets, and the vertical axis 
represents the estimate of total income, using (6.6.1). The total  Y  to be 
estimated – the target parameter value – is indicated by the horizontal 
straight line.  
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The majority (but not all) of the 100 estimates, and their mean, fall clearly 
below the target. The bias is very distinctly negative. This bias cannot be 
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estimated from a single sample, which is all we have in a real survey. The 
variance, which is made up of sampling variance and nonresponse variance 
(see Section 5.2), is illustrated by the fluctuation of the 100 estimates around 
their average. The nonresponse causes not only a bias but also an increase in 
variance. The sampling variance in itself is therefore smaller than the 
variance indicated by the figure. 

� 

3.2. The importance of auxiliary information 

The key to successful nonresponse adjustment lies in the use of “strong” 
auxiliary information. Such use will reduce both the nonresponse bias and 
the variance. 
 
Register variables play an important role in many of Statistics Sweden's 
surveys. They are used in creating an appropriate sampling design and/or in 
the computation of the survey estimates. In both uses, the register variables 
can be called auxiliary variables, because they assist and improve the 
procedures. Most often, as usually in this CBM, the term “auxiliary 
variable” refers to a variable used at the estimation stage to create better 
alternatives to the simplest estimators. 
 
Register variables are frequently used to construct the strata for stratified 
sampling designs. Such designs aim at achieving a targeted precision for 
estimates made for the whole population and/or for particularly important 
domains (subpopulations). It is then important to designate each important 
domain as a separate stratum. In other surveys, particularly in business 
surveys, a register variable may be used as the “size variable” necessary for 
constructing a probability-proportional-to-size design (a pps or a πps  
design), in the manner discussed, for example, in Särndal, Swensson and 
Wretman (1992), Section 3.6. 
 
Terms frequently used in the following are auxiliary variable, auxiliary 
vector, auxiliary information and auxiliary population total(s). We now 
explain our use of these terms. The minimum requirement to qualify as an 
auxiliary variable is that the values of the variable are available for every 
sampled element (that is, for both responding and nonresponding elements). 
For many surveys at Statistics Sweden, such variable values can be found in 
available registers, and are then usually known not only for the sampled 
elements but, more extensively, for all elements in the population.  
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An auxiliary vector is made up of one or more auxiliary variables. There are 
two important steps in the process leading to the form of the auxiliary vector 
that will be ultimately used in the estimation. These are: 
 
(i)   Making an inventory of potential auxiliary variables; 
(ii)  Selecting and preparing the most suitable of these variables for entry 
into the auxiliary vector. 
 
The auxiliary variables deemed potentially useful for the estimation may 
come from several registers allowing the possibility of linking of elements. 
A rather long list of potential variables may result from this scrutiny. The 
next important step is the procedure by which we arrive at the final form of 
the auxiliary vector to be used in the estimation. This process requires 
considerable reflection and study. The decisions to be taken include the 
selection of variables from the available larger set, the setting of appropriate 
group boundaries for converting a quantitative variable into a categorical 
variable, and fixing rules for collapsing very small groups into larger groups. 
 
The estimator scheduled for use in the survey will usually require a known 
population total for each variable in the auxiliary vector. We use the term 
“auxiliary information” with reference both to the auxiliary vector itself, and 
to the known totals for the variables in the vector. Imputation can usually be 
carried out with auxiliary information limited to the sample elements. 
 
Note that when register variables are used in the construction of the 
sampling design, their values must be known for every element in the 
population, as when strata are constructed for a stratified design. When 
auxiliary variables are used at the estimation stage, such detailed 
information may not be necessary. It may suffice to know the population 
total for each auxiliary variable, while knowledge of individual variable 
values may be limited to the sampled elements only. 
 
The following simple example illustrates how nonresponse bias can be 
reduced by incorporating relevant auxiliary information in the estimation 
procedure. 
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EXAMPLE 3.2.1. Reducing the nonresponse bias through the use of 
auxiliary information in the estimator. 

We return to Example 3.1.1, where the expansion estimator was found to 
have an unacceptably large bias. Its poor performance is explained in part by 
the absence of auxiliary information. Suppose now that we can use sex as an 
auxiliary variable and that the frequency of males and of females in the 
population is known. With this information we can instead use the 
poststratified estimator (6.6.4) with  P = 2  poststrata, men and women. We 
computed this alternative estimator for each of the 100 response sets realised 
in Example 3.1.1. The results are shown in the following figure. As in 
Example 3.1.1, the horizontal axis represents the numbering, from 1 to 100, 
of the response sets, and the vertical axis represents the estimated total 
income. The target value  Y  to be estimated is indicated by the horizontal 
straight line.  
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Compared with the figure in Example 3.1.1, we see a striking improvement. 
By visual inspection alone, the mean of the 100 poststratified estimates is 
now seen to be very close to the target value. (It can be shown that the bias 
is actually zero.)   

� 
 
The main topic of this CBM is estimation rather than sampling design. 
However, let us consider one example of how nonresponse bias can be 
reduced by the use of auxiliary information in the sampling design. 
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EXAMPLE 3.2.2. Reduction of nonresponse bias by use of auxiliary 
information in the sampling design. 

A very common procedure at Statistics Sweden has the following two 
features: (i) stratified simple random sampling, and (ii) nonresponse 
adjustment by straight expansion within each stratum, using the inverse of 
the stratum response fraction. The Swedish term for the method is “rak 
uppräkning inom strata”. The underlying assumption is that every element 
within a given stratum responds with the same probability. It is a very 
convenient procedure in routine statistics production; however, there is 
usually little or no attempt to verify if the assumption is satisfied or nearly 
satisfied. 
 
Suppose we use this procedure in sampling from the population discussed in 
Example 3.1.1 and Example 3.2.1: Let there be two strata, men and women, 
and nonresponse adjustment by straight expansion in each stratum. We then 
obtain the same reduction of the nonresponse bias as in Example 3.2.1, 
illustrating that the use of auxiliary information used in the sampling design 
can also serve the purpose of reducing nonresponse bias.  
 
As mentioned previously, important domains of interest are often designated 
as strata for stratified sampling. This permits allocating the total available 
sample resources in such a way that every important domain is sufficiently 
represented to realise a desired precision. As a result, one may decide to 
overrepresent smallish domains, compared to larger ones. For instance, if 
geographic areas are important domains for the population, then the strata 
should be based on these areas.  
 
It should be noted that although the procedure defined by (i) and (ii) is very 
common at Statistics Sweden, it amounts to a very restricted use of auxiliary 
information. If applied in a mechanical fashion, the procedure is oblivious to 
the more effective options that could be realised after an inventory and 
constructive use of other auxiliary information. 

� 
 
Almost all techniques described in this CBM require some form of auxiliary 
information. The availability of strong auxiliary information is particularly 
important in treating nonresponse, because such information lends strength 
to reweighting and imputation procedures, thereby reducing several errors: 
sampling error, nonresponse error and coverage error. 
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EXAMPLE 3.2.3. Examples of reduced nonresponse bias as a result of 
identifying new powerful auxiliary variables.  

That a search for more powerful auxiliary information can significantly 
improve the estimates is illustrated by recent developments in the Labour 
Force Survey (LFS) in Finland and in Sweden. The old survey design, in 
both countries, involved the use of the poststratified estimator, with a 
poststratification carried out on two or all of the dimensions age group, sex 
and region. In both countries it was found that the inclusion of a new, 
dichotomous register variable into the auxiliary vector improved the 
estimation considerably. In its simplest form, this dichotomous variable has 
the value “1” for a person registered in the country's Job Seekers' register, 
and “0” otherwise. For the estimation, the register is matched with the LFS 
sample with the aid of the unique PIN. The number of unemployed, most 
likely underestimated under the old design, was estimated to be significantly 
higher after inclusion of the job seeker variable into the auxiliary vector, as 
revealed by a comparison of the old estimation method with the new. It is 
highly likely that the change in the level of the estimates corresponds to a 
considerable reduction of the nonresponse bias. These developments are 
reported in Djerf (1997), Djerf (2000), Hörngren (1992). 

� 
 
In this section we mention the main principles for selecting auxiliary 
variables when the calibration approach to reweighting is used. These 
principles are illustrated by Example 3.2.4, set in the context of an actual 
survey at Statistics Sweden. The procedure for selecting such information is 
discussed in more detail in Chapter 10. 
 
To reduce the nonresponse bias and the variance of the calibration estimator, 
one should select an auxiliary vector that satisfies as far as possible one or 
both of the following principles: 
 
(i) explains the variation of the response probabilities 
 
(ii) explains the variation of the main study variables.  
 
A third principle to take into account is that the auxiliary vector should  
 
(iii) identify the most important domains. 



3. Nonresponse adjustment 

34 

When principle (i) is fulfilled the nonresponse bias is reduced in the 
estimates for all study variables. However, if only principle (ii) is fulfilled 
the nonresponse bias is reduced only in the estimates for the main study 
variables. Then the variance of these estimates will also be reduced. When 
principle (iii) is fulfilled the effect is mainly a reduction of the variance for 
the domain estimates. Example 3.2.4 below illustrates how one may reason 
in a practical situation to fulfil the principles.  
 
For Statistics Sweden's surveys on individuals, several available registers 
provide a rich source of auxiliary information. We use the Survey on Life 
and Health to illustrate the extent of the potential auxiliary information and 
the steps taken in developing a suitable auxiliary vector for the calibration 
approach. 
 
EXAMPLE 3.2.4. The Survey on Life and Health  (Liv och Hälsa). 

The population consists of persons aged 18-79 in the county of 
Södermanland. As the name suggests, the study variables concern different 
conditions of life and health. Some of these variables are considered more 
important than others and can be designated as “main study variables”, as 
we discuss later. The frame population, as determined by the TPR (see 
Example 2.2.1), was stratified by municipality. The total sample was 
allocated to the strata so as to meet specified precision requirements for each 
municipality. Within each stratum an SRS was drawn. At the end of the data 
collection stage, the nonresponse rate was found to be 34.4%. This very high 
rate would probably have caused a substantial nonresponse bias if no 
nonresponse adjustment had been attempted. Fortunately, as we now 
explain, quite strong auxiliary information was available. Therefore, a 
significant reduction of the bias is a likely result of the calibration approach 
to reweighting. 
 
Two sources of auxiliary information were used: the TPR and the Register 
of Education. As a result of an inventory, six prospective auxiliary variables, 
all of them categorical, were retained: Sex (male; female), Age group (4 
classes), Country of birth (the Nordic countries; other), Income group (3 
classes), Civil status (married; other) and Education level (3 classes).  
 
Two different analyses were carried out. The objective was to see which, if 
any, of the six variables were particularly strong  (a) in explaining the 
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variation of the response probabilities, and  (b) in explaining the variation of 
the main study variables.  
 
The first analysis is a typical nonresponse analysis, consisting in a 
computation of the response rates in the different classes for each of the six 
variables. The results are given in Tables 3.2.1-3.2.6.  
 
Table 3.2.1. Response rate (%) by Sex. 
 
Sex Male Female 
Response rate (%) 60.1 71.2 
 
Table 3.2.2. Response rate (%) by Age group. 
 
Age group 18-34 35-49 50-64 65-79 
Response rate (%) 54.9 61.0 72.5 78.2 
 
Table 3.2.3. Response rate (%) by Country of birth. 
 
Country of birth Nordic 

countries 
Other 

Response rate (%) 66.7 50.8 
 
Table 3.2.4. Response rate (%) by Income group. 
 
Income class (in 
thousands of SEK) 

0-149 150-299 300- 

Response rate (%) 60.8 70.0 70.2 
 
Table 3.2.5. Response rate (%) by Civil status. 
 
Civil status Married Other 
Response rate (%) 72.7 58.7 
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Table 3.2.6. Response rate (%) by Educational level. 
 
Educational level Level 1 Level 2 Level 3 
Response rate (%) 63.7 65.4 75.6 
 
The response rates differ considerably for different categories of a variable. 
Thus, we expect that all six prospective auxiliary variables may be important 
for explaining the variation of response probabilities. The response rates are 
very similar in the last two income groups and the first two educational 
groups, suggesting that they should perhaps be collapsed. However, 
maintaining all the groups may contribute to satisfying principle (ii), so no 
collapsing is undertaken at this stage. 
 
The client was asked to identify the most important study variables. Several 
variables were mentioned, some of them dichotomous. (A dichotomous 
variable is one whose value is 1 for a person who has the attribute and 0 
otherwise.) Four of the identified dichotomous variables were:  (a) poor 
health,  (b) avoidance of walking outdoors after dark for fear of attack,  (c) 
housing problems,  (d) poor personal finances. For each of these an analysis 
was carried out to see how well principle (ii) was satisfied by the 
prospective auxiliary variables.  
 
The analysis relied on the estimates given in Tables 3.2.7 to 3.2.12. The 
estimates were derived by the method “nonresponse adjustment by straight 
expansion within each stratum” (in Swedish “rak uppräkning inom strata”). 
 
Table 3.2.7. Estimated proportion (%) of individuals with property (a)-(d), 
by Sex. 
 
Property Male Female 
(a) 7.5  8.9  
(b) 7.8  21.1  
(c) 2.6  2.4  
(d) 19.6  19.8  
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Table 3.2.8. Estimated proportion (%) of individuals with property (a)-(d), 
by Age group. 
   
Property 18-34 35-49 50-64 65-79 
(a) 4.3  6.6  10.6  10.9  
(b) 11.8  11.4  14.3  23.4  
(c) 5.9  2.8  1.0  0.8  
(d) 31.0  26.6  12.5  9.6  
 
Table 3.2.9. Estimated proportion (%) of individuals with property (a)-(d), 
by Country of birth. 
 
Property Nordic 

countries 
Other 

(a) 8.0  11.7  
(b) 14.7  18.3  
(c) 2.4  4.2  
(d) 19.2  28.5  
 
Table 3.2.10. Estimated proportion (%) of individuals with property (a)-(d), 
by Income group (in thousands of SEK). 
   
Property 0-149 35-49 300- 
(a) 10.0  7.2  4.0  
(b) 18.6  12.6  8.1  
(c) 3.8  1.5  1.0  
(d) 25.3  16.5  6.9  
 
 
Table 3.2.11. Estimated proportion (%) of individuals with property (a)-(d), 
by Civil status. 
 
Property Married Other 
(a) 8.2  8.2  
(b) 13.8  16.3  
(c) 1.1  4.3  
(d) 14.1  26.5  
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Table 3.2.12. Estimated proportion (%) of individuals with property (a)-(d), 
by Educational level. 
 
Property Level 1 Level 2 Level 3 
(a) 10.5  7.3  4.6  
(b) 19.1  12.6  12.9  
(c) 1.7  3.2  1.8  
(d) 17.5  21.6  16.8  
 
Tables 3.2.7 to 3.2.12 show that the prospective auxiliary variables explain 
the study variables to different extents. Most appear to be strong explanatory 
variables, although Sex and Civil status seem weaker, at least for some of 
the four study variables.  
 
The prospective auxiliary variables are to some extent intercorrelated, so if 
all of them were entered together as input into the calibration, some of the 
information would be redundant. For some responding persons, this could 
lead to a few weights that are abnormally high or too low, even negative. An 
increase in variance may be an undesirable consequence of this. Groups that 
are too small may also give this effect. Therefore, in any application of 
calibration, it is recommended to analyse the distribution of the weights.   
 
In this survey the decision was finally made to use an auxiliary vector 
composed of five categorical variables: Municipality, Sex, Age group, 
Country of birth and Educational level. Out of these, Municipality is also 
used as a stratification variable. This does not prevent its inclusion into the 
auxiliary vector; in fact, in order to ensure consistency as defined by (6.3.4), 
it must be included.  
 
The principal domains of interest in this survey are determined by the cross-
classification Municipality by Sex by Age group, represented by the 
expression municipality*sex*age. In order to satisfy principle (iii), these 
three variables should be present in the auxiliary vector. If no other auxiliary 
information were used, the calibration estimator would take the form of a 
poststratified estimator with  M × 2 × 4  poststrata, where  M  is the number 
of municipalities. However, the decision was taken to also include Country 
of birth and Educational level. The most detailed use of the information 
would then be to completely cross-classify all five variables. However, a 
consequence might be that some of the five-dimensional cells contain 
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extremely few observations, or that they are completely empty. This might 
cause an increase in variance. Therefore, Country of birth and Educational 
level were treated as separate variables. The final auxiliary vector can then 
be represented as municipality*sex*age +country of birth+educational 
level. Its dimension is  (M × 2 × 4) + 2 + 3. The calibrated weights resulting 
from this formulation of the auxiliary vector have the following properties: 
When applied to the auxiliary vector, they will give “exact estimates” for:  
(a) the known population counts for the cells determined by Municipality by 
Sex by Age group,  (b) the known marginal counts in the population for 
Country of birth;  (c) the known marginal counts in the population for 
Educational level. In this survey, the calibration estimator and the 
corresponding variance estimator were calculated, for all domains of 
interest, by CLAN97. 

� 
 
Essentially all estimation methods reviewed in this CBM revolve around 
different uses of auxiliary information. Reweighting by the calibration 
approach is discussed in Chapter 6. The technique is very general, and most 
of the “conventional” methods are covered as special cases. A number of 
imputation techniques are discussed in Chapter 7. These methods differ in 
their auxiliary information requirements. Chapter 10 examines the question 
of how to select the “best” auxiliary information from an available larger 
pool of information. 
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4. Estimation under ideal conditions 

4.1. Introduction 

Both nonresponse and frame imperfections are normal features of any 
survey. But they are undesirable, because without them the quality of the 
statistics (the accuracy of the estimates) would generally be better. Neither 
of the two can be completely treated at the design stage of the survey, so we 
need a procedure for dealing with these nuisance factors at the estimation 
stage. 
 
It is easier to develop the principles for estimation under the assumption that 
the two nuisance factors are absent. This is what we do in this chapter. Then 
in Chapters 5 to 10 we discuss the modifications of the estimators made 
necessary by nonresponse and in Chapter 11 we extend the discussion to 
also deal with frame coverage problems. 
 
To fix ideas we introduce some notation. Consider the finite population of  
N  elements  { }NkU ,...,,...,1= , called the target population. We wish to 
estimate the total  
 

∑= U kyY           (4.1.1) 

 
where  yk   is the value of the study variable,  y, for the  kth  element.  
 
We assume that  s   is a probability sample of size  n, drawn from the target 
population  U  (see Figure 4.1.1) with the probability  )(sp . The inclusion 

probabilities, known for all  Uk ∈ , are then  ∑ ∋= ksk sp )(π . We assume 

that the design is such that  π k > 0  for all elements  k. Let  dk k= 1 / π   

denote the design weight of element  k . The design weights are very 
important for computing point estimators.  
 
For computation of variance estimates we also need to consider second 
order inclusion probabilities. A typical probability of this kind is denoted  

klπ   and it  represents the known probability that both k and l are included in 
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the sample, that is, { }∑ ⊃= lkskl sp, )(π . The corresponding weight is denoted  

klkld π/1= . These are defined for all  Uk ∈  and  Ul ∈ . Note that if  lk = , 

then  kkk ππ =   and  kkk dd = .  

 
Commonly used designs are simple random sampling (SRS) and stratified 
simple random sampling (STSRS). In rarer cases at Statistics Sweden, 
probability-proportional-to-size (pps or psπ ) sampling is used. The weights  

kd   and  kld   depend on the sampling design in use. The following example 

illustrates the form of the weights for one particular design, namely, STSRS.  
 
EXAMPLE 4.1.1. Weights under the STSRS design. 

Consider a STSRS design with  H  strata and such that  hn   elements are 

selected from  hN   in stratum  h, Hh ,...,1= . Then the design weights 

needed for the point estimation are hhk nNd /=   for all  k  in stratum  h. The 

weights  kld   needed for the variance estimation are of three types: 

== kkkl dd hhk nNd /=   if  lk =   is in stratum  h,  
)1(

)1(

−
−

=
h

h

h

h
kl n

N

n

N
d   if 

lk ≠   and both  k  and  l  are in stratum  h  and  
h

h

h

h
kl n

N

n

N
d

′

′=   if  k  and  l  

are in different strata, h   and  h′ .  
� 

 
Both the sampling design and the estimators are usually constructed with the 
aid of auxiliary information about the elements  k  = 1, ..., N. The 
information used for the sampling design is usually different from that used 
for the estimators, but nothing prevents the same information being used 
repeatedly, at both stages.  
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Figure 4.1.1. 
 

The computational load is increased by the fact that most surveys require 
estimation not only for the whole population but for a perhaps considerable 
number of subpopulations as well. They are called domains of study or 
domains of interest or simply domains. A domain of interest can be any 
subpopulation. Some domains may be very small in the sense that very few 
observed  y-values fall into it. The precision of any estimate made for such a 
domain will be questionable.  
 
A special case arises when the domains form a set of mutually exclusive and 
exhaustive subpopulations. The domains are then said to form a partition of 
the population  U. For example, a set of domains for a population of 
individuals may based on a cross-classification of sex (male, female) with 8 
age groups covering all ages. Then the resulting 16 domains form a partition 
of the whole population of individuals.   
 
We denote the domains of interest by  U U Ud D1 ,..., ,..., . Suppose that we 
want to estimate the total of the variable  y  for each domain separately. The 
targets of estimation are then the  D  quantities  Y Y Yd D1 ,..., ,..., , where  

∑=
dU kd yY , d D= 1,..., . 

 

Sample: s 
Size: n 

Target population: U  
Size: N 
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We can also express the domain total  ∑=
dU kd yY   with the aid of a “new” 

study variable, yd , derived as a transformation of the original  y-variable, 
but specific for the domain  U D . We denote this new variable  yd , and its 
value for element  k  is defined by 
 





∉
∈

=
 for               0

    for            

d

dk
dk Uk

Uky
y       (4.1.2)    

 
Then  Yd   can be expressed as the total over the entire population total of the 

new variable  dy , that is, 

 
∑= U dkd yY

         
(4.1.3)    

 
To derive the domain variable  dy   for the sample elements, we must be 

able to observe the domain membership for every sample element. 
(However, we do not usually know the domain membership for every 
population element. An exception is when domain membership is indicated 
in the population frame from which we are sampling.)  
 
As mentioned in Section 2.1 we may be interested in estimating different 
types of parameters, such as a population total, a ratio of population totals, a 
population mean. More complex parameters, such as a regression coefficient 
or a correlation coefficient, are sometimes of interest.  
 
In general such parameters can be expressed as a function of totals, that is, 
the parameter has the form  ),...,,...,( 1 Qq YYYf=ψ , where  Y Y Yq Q1 ,..., ,...,   

are the totals involved and  f  is a given function. The principle for 
estimating  ψ   used in this CBM is that each  total is replaced by its 

estimate, that is, )ˆ,...,ˆ,...,ˆ(ˆ 1 Qq YYYf=ψ . Thus, when we know how to 

estimate a population total, estimating other types of parameters is 
straightforward. For certain types of functions f,  CLAN97 can be used for 
calculating the point estimates  ψ̂   and their variance estimates. We return 
to this topic in Section 6.5. 
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4.2. The Horvitz-Thompson estimator 

Let us take an example to show how information may be used to construct a 
sampling design. The construction of an STSRS design begins with the 
assignment of the frame elements to a set of well-defined strata, for 
example, a set of age/sex groups, if the elements are individuals. We must 
thus have information about age and sex allowing every element in the 
frame to be assigned to one and only one of the strata. 
 
Building a probability-proportional-to-size design requires information in 
the form of a positive size measure, zk , known for every element  k  in the 
population. For example, zk   can be the number of employees of an 
enterprise, if we are dealing with a business survey. The design is 
constructed so that the inclusion probability for element  k  is proportional to 
the known value  zk . 
 
When the sampling design has been fixed, the inclusion probabilities  kπ   

and the sampling design weights  d k k= 1/ π   are fixed, known quantities. 
We can then construct an unbiased estimator of  Y, namely, the Horvitz-
Thompson estimator (HT estimator). It is given by  
 
�YHT  = ∑s kk yd          (4.2.1) 

 
This estimator is unbiased for  Y, under any sampling design satisfying  π k > 
0  for all elements  k. Note that once the sampling design has been fixed, the 
variance and other statistical properties of  �YHT   are also fixed. In other 
words, after sampling and data collection, we cannot change the variance of  
�YHT ; it is determined entirely by the choice of sampling design. 

Consequently, if the plan is to use the HT estimator, the sampling design 
should be chosen so as to obtain a small variance for this estimator. The 
sampling design must of course also be practical in other respects. 
 

4.3. The generalised regression estimator 

A wider and more efficient class of estimators are those that use auxiliary 
information explicitly at the estimation stage. Some information may 
already have been used at the design stage. Denote the auxiliary vector by  x, 
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and its value for element  k  by  ( )′= Jkjkkk xxx ,...,,...,1x , a column vector 

with  J  components, where  jkx   is the value, for element  k, of the  j:th 

auxiliary variable. We assume that the population total, ∑U kx , is accurately 

known. 
 
An estimator that uses this information is the generalised regression 
estimator (GREG estimator). This estimator is explained and illustrated by 
several examples in Särndal, Swensson and Wretman (1992), Chapters 6 
and 7. It is given by  
 
�YGREG = �YHT  +  Bxx ˆ)( ′− ∑∑ s kkU k d      (4.3.1) 

 
where 
 
�B = ∑∑ −′

s kkkkkkks k ycdcd )()( 1 xxx      (4.3.2) 

 
is a vector of regression coefficients, obtained by fitting the regression of  y  
on  x, using the data  ( , )yk kx   for the elements  k ∈ s. The data are 
weighted by  d ck k , where the factor  ck   is specified by the statistician 
(Section 4.5 gives some examples). A simple choice is to take  ck = 1  for all  
k. 
 
The GREG estimator is “almost unbiased”. The bias, although not exactly 
zero, tends to zero with increasing sample size, and even for modest sample 
sizes it is normally so small that we do not need to consider it.  
 

The term  Bxx ˆ)( ′− ∑∑ s kkU k d   in the formula for  �YGREG   can be viewed as 

a regression adjustment applied to the  HT estimator, �YHT  = ∑s kk yd . The 

effect is an important reduction of the variance of  �YHT , especially when 
there is a strong regression relationship between  y  and  x. 
 

Although we call  �YGREG   the GREG estimator – in singular form – it is in 
reality a whole set of estimators, corresponding to the different 
specifications that we can give to the auxiliary vector  x k   and to the factor  
ck . If a number of auxiliary variables, or  x-variables, each with a known 
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population total, are available at the estimation stage, we may include in  x k   
those  x-variables that promise to be the most efficient ones for reducing the 
variance. That is, we select some or all of the available  x-variables for 
inclusion in the auxiliary vector  x k . Consequently, the vector  x k   to be 

used in  �YGREG   can take a variety of forms, given that we have at our 
disposal a certain quantity of  auxiliary information. This is illustrated by 
several examples in Section 4.5. 
 
Note that we can wait until after sampling and data collection to specify 
which of the possible GREG estimators we are going to use, because the 
decision on the  x-variables to include in  x k   need not be made until after 
these survey operations have been completed. 
 
The presentation in this CBM is facilitated by expressing the estimator  
�YGREG   as a linearly weighted sum of the observed values  yk . When we do 

this, we get 
 
�YGREG  = ks kk ygd∑          (4.3.3) 

 
where the total weight given to the value  yk   is the product of two weights, 
the design weight  d k k= 1/ π , and the weight, gk , which depends both on 
the element  k  and on the whole sample  s  of which  k  is a member. It is 
given by 
 

kkkks ks kkU kkk cddcg xxxxx 1)()(1 −′′−+= ∑∑∑    (4.3.4) 

 
The value of  gk   is near unity for a majority of the elements  k ∈ s, and the 
greater the size of the sample  s, the stronger is the tendency for the  gk   to 
hover close to unity. It is rare to find elements with a weight  gk   that is 
greater than 4 or less than 0. Negative weights are allowed; such weights do 
not invalidate the theory, but some users would like all weights to be 
positive. In Section 6.5 we discuss methods to ensure that all weights are 
strictly positive. 
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As is easily verified, the HT estimator is a special case of  �YGREG , obtained 

when  (i) x k = ck = 1  for all  k ∈ s, and  (ii) the design satisfies  Nds k =∑ . 

The condition (ii) holds, for example, for the SRS and STSRS designs. 
 
When we apply the weight system  d gk k   to the auxiliary vector  x k , and 

sum over the elements  k ∈ s, we obtain an estimate of the population total 
of  x k . This estimate turns out to be exactly equal to the known value of that 
total, that is, we have 
 
∑s kkk gd x = ∑U kx         (4.3.5) 

 
This makes good sense, because the weight system would not seem 
reasonable if it led us to estimate the total of  x k   by anything other than the 
known value that we have for this total. The weight system is called 
calibrated or, sometimes, consistent. More specifically, it is calibrated to the 
known population total  ∑U kx . 

 
Estimation for a domain is straightforward. We calculate the GREG 
estimator of  ∑= U dkd yY  recognizing that the study variables the new 

variable  yd   (rather than  y  itself), given by (4.1.2). This means that the 
weights are kept the same as when  y  is the variable of interest. In other 
words, using (4.3.3) and (4.3.4), we have the point estimator 
 

dkks kdGREG ygdY ∑=ˆ
        

(4.3.6)    

 

4.4. Variance and variance estimation 

With every estimator  �Y   is associated an unknown variance (over repeated 

samples). The variance, V Y( �) , always remains an unknown quantity, a 
function of the whole population, which we do not observe in totality. 
Nevertheless, the variance is a theoretical quantity of considerable interest. 

An important survey objective is to estimate the variance V Y( �) . The usual 
procedure is to start with the formula for the variance, and to transform it 
into an estimated variance. Once computed from the sample data, the 

estimated variance, denoted  �( �)V Y , opens up the possibility of assessing the 
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precision of  �Y . We can for example use  )ˆ(ˆ YV , and the point estimate  
�Y , to compute a confidence interval for the unknown parameter  Y.   

 
Here and in the following sections we assume that an approximate 95% 
confidence interval is computed according to the formula  
 
point estimate ±  1.96 1/2)estimate (variance  
 

To close approximation, the expression for the variance of  �YGREG   is  
 

V YGREG( � )  = lkU
kl

lk EE
d

dd
∑∑ 





−1       (4.4.1) 

 
where the residuals are those arising from the “population regression fit”. 
(For any set of elements  A, UA ⊆ ,  we write for simplicity the double sum  

∑ ∑
∈ ∈Ak Al

  as  ∑∑A .) This fit, which cannot be carried out in practice, has 

the residuals  
  
E yk k k= − ′x B   
 
where   
 
B = ∑∑ −′

U kkkkkU k ycc )()( 1 xxx       (4.4.2) 

 

Here we focus on the estimated variance of the GREG estimator  �YGREG . The 
computational procedure is relatively simple and can be carried out, for 
some important sampling designs, by the software CLAN97. Not 

surprisingly, �( � )V YGREG   is a function of the regression residuals arising from 
the regression of  yk   on the auxiliary vector  xk , and is such that the 
smaller these residuals, the smaller the estimated variance of estimator  
�YGREG , which makes good intuitive sense. We have 

 
�( � )V YGREG  = ))()(( llkkklls k egegddd −∑∑     (4.4.3) 
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where  Bx ˆ
kkk ye ′−= , with  �B   determined by (4.3.2), and  gk   is given by 

(4.3.4). This formula requires that all first and second order inclusion 

probabilities be strictly positive. For a derivation of  �( � )V YGREG , see, for 
example, Särndal, Swensson and Wretman (1992). Because of the double 
sum, there are  n(n - 1)/2  different terms, a very large number for most 
surveys. For example, there are around 05 106. ×  terms when the sample size 
is  n = 1000. To compute them all would be very tedious. In practice, 
computation therefore proceeds via the usually much simpler expression that  
�( � )V YGREG   reduces to after an algebraic manipulation taking into account the 

particular form taken by the weights  dk = kπ/1   and  kld = klπ/1   under the 

sampling design used in the survey. 
 
Remark 4.4.1.  There are some examples in the literature showing that the 
variance estimator (4.4.1) of the general regression estimator suffers from a 
negative bias when the sample is small. A variance estimator better suited 
for such a situation is  ( )GREGadj YV ˆˆ , which has the same form as  ( )GREGYV ˆˆ , 

given by (4.4.3), but where  ke   is replaced by an adjusted residual, namely  

kkkadj efe =, . In principle, kf , adjusts for the number of degrees of freedom 

lost when further parameters are estimated. Lundström (1997), Section 
2.3.1, explains this procedure in more detail. 

� 
 
EXAMPLE 4.4.1. Variance and variance estimator under STSRS.  

Example 4.1.1 gives the weights  kd   under the STSRS design. An algebraic 

manipulation of (4.4.1), using these weights, gives the factor  
N f nh h h

2 1( ) /−   characteristic of stratified sampling variances, and we 
obtain 
 

V YGREG( � )  = 2

1

2 1
hEU

h

h
H

h
h S

n

f
N

−
∑

=
 

 
where  SEUh

2   is the stratum variance of the residuals  Ek . 

 
The variance estimator (4.4.3) becomes  
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�( � )V YGREG  =  
1

)
1

(
1

2

1

2

−

−
−

∑ ∑
∑

= h

s s kk
h

kk

h

h
H

h
h n

eg
n

eg

n

f
N

h h

 

 
� 

 
Finally, we need to discuss the variance (and its estimation) for the domain 
estimator  dGREGŶ   given by (4.3.6). The expressions follow by a simple 

modification of (4.4.1), where we simply replace  yk   by  ydk , given by 
(4.1.2). This implies that the residual  ek   in (4.4.3) is replaced by the new 
residual   
 

dkdkdk ye Bx ˆ′−=          (4.4.4) 

 

where  dB̂   is given by (4.3.2) if we replace  yk   by  ydk . The theoretical 

justification for the procedure is that the GREG estimator can be applied to 
any study variable. If the GREG estimator works for the study variable  y, it 
will also work for the new variable  yd , even though it is “unusual” in that 
many of its values ydk   may be zero.  
 
It is important to identify auxiliary information that comes as close as 
possible to identifying the domains. Otherwise the residuals (4.4.4) can be 
relatively large and the effect of the auxiliary information might be slight, 
especially for small domains. We pursue this issue further in Example 4.5.3. 
 

4.5. Examples of the generalised regression estimator 

Consider, as a simple first example, a survey of individuals for which it is 
possible to use sex as an auxiliary variable; see also Example 3.2.1.  
 
EXAMPLE 4.5.1. One-way classification. 

For a population of individuals, we assume that the number of males and 
females, N 1   and  N 2   respectively, are known. In this case, the vector  x k   
has only two possible values, namely, x k = ( , )1 0 ′   for all males, and   
x k = ( , )0 1 ′   for all females. The population total of the  x k   is thus  
( , )N N1 2 ′   which is known. A derivation of the g-weights, given by (4.3.4), 
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shows that  
∑

=
1

1

s k
k d

N
g   when  k  is male, where  s1   denotes the male part 

of the whole sample  s. Analogously, we get  
∑

=
2

2

s k
k d

N
g   when  k  is 

female, where  s2   is the female part of  s. As is easily verified, the weights  
d gk k   satisfy the calibration property  (4.3.5). The GREG estimator for this 

simple case of auxiliary information is therefore  
21

~~ˆ
21 ssGREG yNyNY +=   

with  ∑∑=
jjj s kks ks dydy /~   for  j = 1,2. The GREG estimator resulting 

from this structure of the  x k -vector is called a poststratified estimator (with 
two poststrata). 

� 
 
The generalisation to an arbitrary number of categories or poststrata is 
obvious. The categories may be defined by a cross-classification, as in the 
following example.  
 
EXAMPLE 4.5.2. Two-way classification. 

Consider a register listing a population of individuals distributed according 
to sex and three different regions. Then all population counts in the 
following table can be derived.  
 
  Region   Total 
Sex  1 2 3  
Male 1 11N  N 12  N13  N1.  

Female 2 N 21  N 22  N 23  N 2.  

Total  N .1  N .2  N .3  N ..  

 
 
Here the most detailed auxiliary information consists of the six cell counts  
N N11 23,...,  . The  x k -vector that expresses this information consists of six 
components, one of which is “1” while the others are zeros. For example, 
for every population element in cell (1,2), males in Region 2, the vector has 

the value  ( )x k = ′
0 1 0 0 0 0, , , , , . The sum of these vectors over all population 

elements is the known vector  ( )N N N N N N11 12 13 21 22 23, , , , ,
′
. Using this 
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auxiliary information, the resulting GREG estimator  �YGREG   is a 
poststratified estimator, though now with six terms, corresponding to six 
poststrata. 
 
There are situations where complete cross-classification of the variables is 
impractical or inconvenient, for instance, when (i) the variables come from 
different registers, or (ii) some cell counts are small. In the first situation the 
use of cell counts may be costly, since the registers have to be matched. In 
the second situation small cell counts may make the estimator unstable. This 
can sometimes be avoided by collapsing cells; see Chapter 10. However, an 
alternative is to use only information defined by the marginal counts. The 
auxiliary vector for this case is of dimension five and is such that the first 
two positions indicate sex and the final three positions indicate region. For 
example, the auxiliary vector for each population individual in cell (1,2) has 
the form  

� ���
regionsex

k )0,1,0,0,1( ′=x . The required population sum of all these  kx -

vectors is  ( )N N N N N1 2 1 2 3. . . . ., , , ,
′
  which is known. We return to the Two-

way classification in Section 6.6. 
� 

 
A guiding principle in estimation for domains is to use an auxiliary vector 
that as closely as possible identifies the domains. This will reduce the 
absolute size of the residuals, which in turn results in a lower variance. The 
following example illustrates this.  
 
EXAMPLE 4.5.3. Domain estimation. 

For a population of individuals assume that we want separate estimates for 
males and females. They define two domains of the population. Further, 
assume that the sampling design is SRS and that we know the number of 
males and females in the population. We have decided to use the GREG 
estimator for the domain total  dY , 2,1=d , and we choose between two 

alternative formulations of the auxiliary vector:   
 
Alternative (i): the GREG estimator based on the simplest possible 
specification, that is, 1== kk cx   for all elements.  
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Alternative (ii): the GREG estimator where  x k = ( , )1 0 ′   for all males, and  

x k = ( , )0 1 ′   for all females and  1=kc   for all k; see Example 4.5.1.  

 
We find, using the procedure stated at the end of the previous section, that 
the variance is  

 

)ˆ( dGREGYV  = 
n

Nn
N

/12 − ∑
− U dkE

N
2

1

1
 

 
where the only difference between the two alternatives lies in the residuals  

dkE .  

 
In Alternative (i), the residuals are  
 





−∈−
∈−

=
dd

ddk
dk UUk NY

Uk NYy
E

for          /

for          /
 

 
and in Alternative (ii), the residuals are 
 





−∈
∈−

=
d

dddk
dk UUk 

Uk NYy
E

   for                  0

   for      /
 

 
It is easily seen that  ∑U dkE 2

  
(and therefore the variance) is considerably 

greater for Alternative (i) than for Alternative (ii).  
 
In Alternative (ii), the situation for domain estimation is highly favourable 
in that the auxiliary vector coincides exactly with the domain indicator. The 
reduction of the variance will be significant, compared to Alternative (i).  

� 
 
The examples discussed so far in this section involve categorical auxiliary 
information. Let us see what can be accomplished if there is also a 
quantitative auxiliary variable. This variable, xk , can be used alone or in 
different combinations with the categorical variables. Some possibilities are 
studied in Example 4.5.4. 
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EXAMPLE 4.5.4. A one-way classification combined with a quantitative 
variable.  

Assume that the frame specifies sex and region as in Example 4.5.2 and also 
the value  xk   of a quantitative auxiliary variable, such as income. Let us 
construct some auxiliary vectors that lie within the limits set by this 
auxiliary information. The population cells are denoted  U U11 23,...,   and the 

regions are 2.1. , UU   and  3.U . 

 
Case Auxiliary vector  x k  Auxiliary population total x kU∑  

i xk  ∑U kx  

ii ( , )1 xk ′  ∑ ′
U kxN ),(  

iii ( )0 0 0 0 0, , , , ,xk

′
 ( )′∑∑

2311
...,, U kU k xx  

iv ′

−
������������

variablex

k

counts

x )0,0,0,0,,00,0,0,0,1,0(  ( )′∑∑
2311

...,,,,..., 2311 U kU k xxNN  

v 
�

( , , , , )1 0 0 0
sex

k

region

x ′
��� ��

 ( )′∑∑∑
3.2.1.

,,,, .2.1 U kU kU k xxxNN  

 
 
Some well-known estimators arise from these five cases. Let us consider 
two of them, for the SRS sampling design. When  x k kx=   and  c xk k= 1 / , 
the ratio estimator is obtained from the general formula (4.3.3), that is,  

s

s
U kGREG x

y
xY ∑=ˆ         (4.5.1) 

where  ∑= s ks y
n

y
1

  and  ∑= s ks x
n

x
1

. 

 
When  x k kx= ′( , )1   and  ck = 1  for all  k, the regression estimator is 
obtained, that is, 
 

( ){ }BxXyNY ssGREG
ˆˆ −+=        (4.5.2) 

where  NxX U k /∑=   and  
2

ˆ
xs

xys

S

Cov
B =   

with  ( )( )∑ −−
−

= s skskxys yyxx
n

Cov
1

1
  and  ( )∑ −
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At this point, we only wish to emphasise that a given quantity of auxiliary 
information may lead to several different formulations of the auxiliary 
vector  kx . Note that (iv) represents the most complete use of the existing 

information.   
� 
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5. Introduction to estimation in the presence of 
nonresponse 

5.1. General background 

As in Chapter 4, our objective is to estimate the target population total of the 
study variable  y, that is, Y = ∑U ky   or the domain totals  ∑=

dU kd yY ,  

Dd ,...,1= . To this end, a sample  s  is drawn from the frame according to a 
given sampling design. As in Chapter 4 we assume in this chapter that the 
frame population agrees exactly with the target population, U . In practice 
this condition is often not met, because of frame errors. These imperfections 
are discussed in Chapter 11. A difference in this chapter compared with 
Chapter 4 is that we no longer assume full response. 

The given sampling design determines the design weight  d k k= 1 / π   for 
every element  k U∈ , where  π k   is the inclusion probability of  k. We 
assume that response is obtained for the elements in a set denoted  r.  (The 
concept of “response set ” is illustrated in Example 2.2.3.) Full response 
implies that  r = s. Nonresponse implies that  r  is a proper subset of  s. The 
nonresponse set is denoted  o = s – r. The situation is illustrated in Figure 
5.1.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.1.1. 

Sample: s 
Size: n 

Target population: U  
Size: N 

Nonresponse set: o 
Size: n-m 

Response set: r 
Size: m  
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Most surveys involve more than one study variable, and consequently we 
will ordinarily have both unit nonresponse and item nonresponse as 
explained in Section 2.2. In this chapter and in Chapters 6 and 7, we limit 
the discussion to the case of a single study variable  y. Consequently,  we 
can proceed in this chapter as if only unit nonresponse existed. If the survey 
has item nonresponse as well as unit nonresponse, important decisions must 
be made about how item nonresponse is to be treated in the estimation 
process. We defer this discussion until Chapter 9. 
 
As mentioned earlier, the estimation methodology currently used by 
statistical agencies distinguishes two main approaches for dealing with 
nonresponse. These are reweighting and imputation. When reweighting is 
used, new weights are determined, with the aid of the available auxiliary 
information, and applied to the  y-values for the responding elements  k r∈ . 
In this CBM, we use a calibration approach to compute these new weights. 
Consequently, the estimator of the parameter of interest,  
Y = ∑U ky , will be of the form  kr kW ywY ∑=ˆ , where the new weights  wk   

are, at least for most elements, greater than the weights that would have 
been applied in the case of full response. This is in order to compensate for 
elements lost due to nonresponse. A detailed discussion of reweighting 
using the calibration approach is given in Chapter 6. 
 
The other principal approach for nonresponse treatment, imputation, implies 
that proxy values are created for the values  yk   that are missing because of 
nonresponse. The proxy value for element  k o∈ , often called the imputed 
value for  k, is denoted  �yk . The superimposed “hat” serves as a reminder 
that an imputed value is in some sense an estimated value, rather than one 
that has been observed. For element  k, the “estimation” is carried out by a 
given imputation method. There are many imputation methods in current 
use, and more than one imputation method is often used in one and the same 
survey. In other words, all  �yk   may not be constructed by the same method. 
Chapter 7 contains a detailed discussion of different imputation procedures. 
The completed data set will contain the same number of values as the 
originally intended sample s, that is, n  values, and they are given by 
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The estimator of the parameter of interest, Y = ∑U ky , will now be of the 

form  kks kI ygdY •∑=ˆ , assuming that the GREG estimator (4.3.3) is used as 

a starting point. We call this estimator the imputed GREG estimator.  
 

The imputed HT estimator is of the form  ks kI ydY •∑=ˆ .  

 

5.2. Error caused by sampling and nonresponse 

This CBM proposes techniques for simultaneously reducing the sampling 
error and the nonresponse error after the data collection stage, that is, after 
some nonresponse has occurred. The principal avenue for reducing these 
errors is an effective use of auxiliary information. The success of this 
operation is contingent upon access to “strong” or “powerful” auxiliary 
information. As mentioned, two main approaches have evolved in this 
regard, namely, reweighting and imputation. Our general notation will be  
�YW   for a reweighting estimator and  �YI   for an estimator created by 

imputation.  
 
Within each approach, there are many possible uses of auxiliary 
information. Even when the available auxiliary information is “strong”, we 
have to accept that both  �YW   and  �YI   are affected by sampling error and 
nonresponse error. However, generally speaking, the stronger the auxiliary 
information, the smaller the two  errors. 
 
The two types of error were briefly mentioned in Section 2.2. Our objective 
in this section is to arrive at a deeper understanding of these errors and the 
procedures used to reduce them.  
 

In what follows the nonresponse estimator, �YNR , represents both  �YW   and  
�YI . Further, we denote by  �Y   the expression taken by  �YNR   for the case of 

full response, when  r = s. We assume that  �Y , called the full response 
estimator, is either the GREG estimator or the HT estimator; see Sections 

4.3 and 4.2. The total error of the  �YNR   estimator (its deviation from the 
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target parameter value  Y) can be decomposed into a sum of two error 
components, 
 

)ˆˆ()ˆ(ˆ YYYYYY NRNR −+−=−        (5.2.1) 

 
The first term on the right hand side, �Y Y− , is the sampling error (the error 
caused by selecting a sample only, rather than the whole population) and the 

second term, � �Y YNR − , is the nonresponse error. 
 

We consider first the expected value, or average, of the estimator  �YNR . It 

measures the central tendency of the estimator  �YNR . The average (over all 
possible samples s) of the sampling error is zero or almost zero, since the 
full-response estimator is unbiased or nearly unbiased. The average (over all 
possible samples  s  and all possible response sets  r) of the nonresponse 
error is likely to be different from zero. That is, nonresponse introduces bias 
into the estimation.  

To analyse the accuracy of the estimator  �YNR , we need to analyse its Mean 

Squared Error, MSE( �YNR ), which is the average of the squared total error, 

( � )Y YNR − 2 , over all samples  s  and all response sets  r.   

The notions of expected value, unbiasedness and MSE are thus tied to a 
two-fold averaging process: over all possible response sets  r, realised by the 
(unknown) response mechanism denoted  q r s( ) , for a fixed sample s, and 

over all possible samples s, drawn by the known sampling design  p s( ) . We 
denote the expectation operators with respect to these two distributions by  
Eq   and  E p , respectively. Operators with respect to both distributions 

jointly will be given the index  pq. 

The nonresponse bias can be expressed as 

)()ˆ( cpNRpq BEYB =         (5.2.2) 

where  YsYEB NRqc
ˆ)ˆ( −=   is the conditional nonresponse bias, given the 

realised sample  s.  
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In practice, it is virtually impossible to tell whether the condition for 

unbiasedness, 0)()ˆ( == cpNRpq BEYB , is fulfilled, because the response 

mechanism  q r s( )   is unknown. However, in practice one often makes the 

subjective assumption that the nonresponse bias is “sufficiently” small. The 
assumption is sometimes justified. Much of the knowledge about the 
nonresponse bias comes from simulation studies where different population 
and response mechanisms are used. These problems are discussed in more 
detail in Chapter 10.   

If we assume that the conditional bias  Bc   is zero or negligible for any 
realised samples  s, then the variance is shown in Appendix A to be given by  

V Y V Vpq NR SAM NR( � ) = +         (5.2.3) 

where  V V YSAM p= ( �)   and  )ˆ( sYVEV NRqpNR = . The component  VSAM   is 

called the sampling variance. This is the variance over all possible samples 
that can be drawn with the given sampling design; it does not depend on the 
nonresponse or the response mechanism. The component  VNR   is called the 
nonresponse variance. This is an average over all samples  s  as well as over 
all response sets  r. 

In order to assess the probable error of  �YNR   , we need an estimate of the 
total variance, represented here by the sum of the two terms in (5.2.3). (A 
survey normally has other significant errors, but they are not considered 
here.) 

There is considerable interest also in evaluation of each of the two 
components individually. Practitioners usually have a very vague idea of 
how much the total variance is accounted for by the nonresponse variance 
component  VNR . This is because the routine measurement of the two 
components in (5.2.3) is seldom or never attempted. However, it is of 
practical interest to know the relative size of these two components. For 
example, if  VNR   in a regularly repeated survey is found to account for a 
major proportion of the total variance, it may be an important signal to try to 
devote more of the survey resources to reducing the nonresponse on the next 
survey occasion. 
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What can be done to estimate the two components of (5.2.3)? Section 6.4 

provides a general answer for the reweighting estimator  �YW .  This method is 

also applicable to the imputed estimator  �YI , when it coincides with  �YW , as 
is the case for the GREG-conformable multiple regression method; see 
Remark 7.2.1. For other imputation methods reviewed in Chapter 7 there is 
no general variance estimation method but attempts have been made to 
estimate the two components separately. The estimate of  VNR   depends on 
the imputation method in use, because the methods are more or less 
accurate. For the sampling variance component  VSAM , one may use an 
appropriate modification of the formula intended for 100% response, given, 
in the case of GREG estimator, by (4.4.3). These questions are examined in 
Sections 7.3.4 and 7.3.5. 

The nonresponse bias cannot be estimated, but some analysis is possible. 
Appendix C gives a general expression for the bias of the reweighting 

estimator �YW .  The expression is a function of the study variable  yk , the 
auxiliary vector  x k , the factor  ck   and the response probability  θk , given 
by (6.1.1). Some specific estimators and their bias expressions are analysed 
in Chapter 10. For most of the imputation methods there is no general 
expression for the nonresponse bias. One exception is the GREG-

conformable multiple regression method, because then  �YI   is identical to  
�YW   (see Remark 7.2.1 and Appendix D) and consequently, the general bias 

expression for  �YW   applies. 
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6. Reweighting for nonresponse 

6.1. Background and conventional methods for reweighting 

At the time when Statistics Sweden's (1980) handbook “Räkna med bortfall” 
was written, the predominating view of nonresponse was centred on a 
deterministic model of survey response: The population was assumed to 
consist of two non-overlapping parts, a response stratum and a nonresponse 
stratum. Every element in the former was assumed to respond with certainty 
if selected for the sample, and every element in the latter stratum had 
probability zero to respond. An obvious criticism that could be levied 
against that model is that it is simplistic and unrealistic. Moreover, the sizes 
of the two strata could usually not be assumed to be known. An approach 
that was sometimes used was to estimate the total for the response stratum, 
and then to add a term to compensate for the nonresponse stratum. 
 
In the 1980's, a more satisfactory two-phase approach to reweighting for 
nonresponse became popular. The name refers to a view of the selection 
process as one in which a desired sample  s  is first selected from the 
population  U, whereupon a set of respondents, r, is realized as a subset of  
s. The approach is more realistic than the deterministic one in that it allows 
every element  k  to have its own individual response probability  kθ   where  

0 � kθ  � 1  for all  k. This generality is not without a price: the response 

probabilities  kθ   are usually unknown, and progress with this approach 

requires that the  kθ   be replaced with estimates, constructed with the aid of 

auxiliary information.  
 
The two-phase approach is discussed in the literature, for example, in 
Särndal, Swensson and Wretman (1992). Chapter 9 of that book develops 
the theory of two-phase sampling in the presence of auxiliary information. In 
the traditional formulation of two-phase sampling, a first sample is selected 
from  U, certain variables (although not the study variable(s)) are observed, 
then a smaller subsample is realized from the first sample, and the study 
variable(s) are observed for the elements of the subsample. All inclusion 
probabilities are known by design, those for the first phase as well as those 
for the second phase.  
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Chapter 12 of the book adapts the two-phase theory to the case where 
sampling is followed by nonresponse. Assume for a moment that the 
response distribution  )( srq   is known. (In practice this is not the case.) 

This implies that the first and second order response probabilities,  
 

Pr( )k r s k∈ = θ   

and            (6.1.1) 

Pr( & )k l r s kl∈ = θ  

 
are known. Let  kx   be the auxiliary vector to be used in the estimator. 

Under these conditions, the two-phase GREG estimator of the population 
total  ∑= U kyY , as obtained from Chapter 9 of Särndal, Swensson and 

Wretman (1992), is given by  
 

∑= r kkkkSSW ygdY θθ /ˆ         (6.1.2) 

 
where  kkd π/1=   and  

 
( ) kr r kkkkkkkkU kkk cddcg xxxxx ∑ ∑∑ −′′−+= 1/)/(1 θθθ   (6.1.3) 

 
The transformation of this estimator into one that is useful for a sample 
survey with nonresponse requires replacing the unknown  kθ   by estimates  

kθ̂ . This step entails:  (a) the formulation of a realistic model for the 

response mechanism with the response probabilities  kθ   as unknown 

parameters, and  (b) the estimation of these response probabilities, using any 
relevant auxiliary variables and the fact that some sample elements were 
observed to respond whereas the others did not.  
 
An often used model states that the population consists of nonoverlapping 
groups with the property that all elements within one and the same group 
respond with the same probability, and in an independent manner. Such 
groups are known as response homogeneity groups (RHGs). In a survey of 
individuals, the groups may be based on age by sex categories, for example. 
The auxiliary information required is that we can uniquely classify every 
sampled element, respondent or nonrespondent, into one of the groups. The  
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point estimator obtained from (6.1.2) when the unknown  kθ   are replaced 

by the estimates  kθ̂   flowing from this RHG model is discussed in detail in 

Chapter 12 of Särndal, Swensson and Wretman (1992). These authors also 
give an appropriate variance estimator, composed as a sum of two 
components, one measuring the sampling variance, the other the 
nonresponse variance. The point estimator is essentially unbiased if the 
assumed  RHG model is a true representation of the response pattern in the 
survey; the difficulty in practice is, of course, that it virtually impossible to 
foresee the true response pattern. Other attempts at modelling the response 
mechanism have been made, including logistic regression modelling, as in 
Ekholm and Laaksonen (1991).  
 
The two-phase approach to reweighting has the following characteristics: 
 
 (i)  the modelling of the response mechanism constitutes a separate step; 
 
 (ii)  if a set of auxiliary variables is available, one subset of these variables 
is used in the estimation of the response mechanism, another subset (which 
may have some overlap with the first subset) is used to formulate the 
auxiliary vector  kx   required for the estimator (6.1.2) of  Y, where  kθ   is 

replaced by  kθ̂ . 

 
In practice, the two-phase approach to reweighting requires analysis and 
decision making. The statistician must decide on the best use of the total set 
of available auxiliary variables for each of the two tasks in (ii). If nothing 
else, these selection tasks will take time. A simpler (but usually not any less 
efficient) alternative is the calibration approach to reweighting described in 
the following sections. 
 

6.2. Introduction to the calibration approach 

In this CBM, calibration is the main tool for reweighting for nonresponse. 
This calibration approach requires the formulation of a suitable auxiliary 
vector, through a selection from a possible larger set of available auxiliary 
variables. This step follows a few basic and simple principles. They are 
explained in Section 10.2.1. The next step is computational. A set of 
calibrated weights is produced, using the selected auxiliary information as 
an input. One of several existing computer programs can be used, for 
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example, CLAN97; see Section 6.5. This software can handle any auxiliary 
vector, and a number of important sampling designs. 
 
This calibration approach leads to a calibration estimator of  Y, denoted  
�YW , and a corresponding variance estimator, denoted  �( � )V YW . The index  W  

was chosen to suggest the term “weighting”. The calibration approach 
provides a unified treatment of the use of auxiliary information in surveys 
with nonresponse. In the presence of powerful auxiliary information, the 
approach meets the objective of reducing both the sampling error and the 
nonresponse error. The approach is general in that it can be applied for most 
of the common sampling designs and with any number of variables present 
in the auxiliary vector. In the following sections we highlight the practical 
aspects of the approach and illustrate it by a number of examples. The 
theoretical aspects are only briefly outlined; for more detail on these, the 
reader is referred to Lundström and Särndal (1999) and Lundström (1997).  
 
The calibration approach has only a single computational step, in which the 
calibrated weights are produced. It is thereby more direct than the two-phase 
approach, in that it requires no separate modelling of a nonresponse 
mechanism. For these reasons, the calibration approach is better suited for a 
routine treatment of nonresponse in a organization such as Statistics 
Sweden. It is in many cases as efficient as the two-phase approach.  
 

6.3. Point estimation under the calibration approach 

For the survey that interests us, we assume that the GREG estimator (4.3.3), 
with a specified vector  x k , would be chosen if the survey had full response, 
so that  r = s. A required input is the population total of the  x k -vector, 

∑U kx . This estimator would be a good choice, because  (a) it is unbiased,  

(b) its variance is small when  x k   is a good explanatory vector for the study 

variable  ky , and  (c) it is consistent in the sense mentioned in Section 4.3: 

the weights satisfy the calibration equation 
 
∑s kkk gd x = ∑U kx         (6.3.1)  

 
However, we are concerned here with surveys with nonresponse, so  ky -

values are available only for the elements  k  in the response set  r, a subset  
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of the sample  s. Then, whatever the estimation technique, there will be 
some bias. Desirable properties of the chosen estimator are now:  (i) a small 
nonresponse bias,  (ii) a small total variance, and  (iii) agreement with the 
GREG estimator (4.3.3) when sr = . The total variance is now the sum of 
the sampling variance and the nonresponse variance. Property (i) is 
particularly important. 
 
The calibration estimator is, like the GREG estimator, formed as a linearly 
weighted sum of the observed  ky -values. It is defined by  

 

∑= r kkW ywŶ      (6.3.2) 

 
where  w d vk k k=   with 
 

( ) ( ) kr kkkkr kkU kkk cddcv xxxxx
1

1
−∑∑∑ ′′−+=     for  k r∈  (6.3.3) 

 
 
We omit the derivation that leads to the calibrated weights  w d vk k k=   in 
(6.3.2). Details are given in Lundström (1997). The principle behind the 
derivation is to minimize a function measuring the distance between the 
“old”  weights, kd , and the  “new”  weights, kw , subject to the calibration 

equation 
 
∑r kkk vd x = ∑U kx         (6.3.4) 

 
The calibrated weights are therefore “as close as possible” (with respect to 
the given distance measure) to the design weights  kd , and they ensure 

consistency with the known auxiliary variable totals.   
 

The degree to which  WŶ   succeeds in realising the desired properties (i) and 

(ii) depends on the quality of the auxiliary vector  x k . Some  x k -vectors 
succeed better than others, as the examples in the following sections will 
show. The desired property (iii) is easily verified: when  r = s, vk   reduces 

to  gk   given by (4.3.4), so for full response, �YW   is identical to the GREG 
estimator (4.3.3).  
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The following example is an over-simplification of any situation arising in 
practice, but it suggests very convincingly that in the presence of powerful 
auxiliary information, the calibration approach can produce highly accurate 
estimates. 
 
EXAMPLE 6.3.1. Perfect linear relationship in the population. 

Assume that a perfect linear relationship exists between the study variable  

ky   and the auxiliary vector  xk , so that  

 
�x kky ′=    for every  k U∈        (6.3.5) 

 
where  �   is a (column) vector of constants. Then  �YW   provides an exact 

estimate of the total  Y  that we seek to estimate, that is, �Y YW = , which is 
easily shown by  
 

YywywY U kU U kkr kkr kkW ==′=′=′== ∑∑ ∑∑∑ �x�x�x )()(ˆ  

� 
 

This example is unrealistic, because in practice, one can never count on 
having the perfect linear relationship that (6.3.5) expresses; if it were known 
to hold, there would be no need for a survey. But the example does suggest 
that when the relationship, or the correlation, between  ky   and  xk   is 

strong, then the calibration estimator  �YW   should come very near the 
“truth”, Y, in other words, both the sampling error and the nonresponse error 
would be essentially eliminated. 
 
We can also produce a calibration estimator for a survey in which the 
auxiliary vector values  x k   are known up to the level of the sample  s, 

whereas the population total  ∑U kx   is unknown. We still know enough to 

form the sample-based HT estimator of that total, namely, ∑s kkd x . As 

shown in Lundström (1997), and Lundström and Särndal (1999), calibration 
on this estimated total produces the weights  skk vd   in the following 

calibration estimator: 
 
�Y d v yWs k sk kr= ∑      (6.3.6) 
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with  

( ) ( ) kr kkkkr kks kkksk cdddcv xxxxx
1

1
−

∑∑∑ ′′−+=    (6.3.7) 

 
The calibration approach is very flexible. Also, it is convincing to find that 
many “conventional” techniques for nonresponse reweighting are special 
cases of (6.3.2) or (6.3.6). Several such techniques are described in Statistics 
Sweden's handbook on nonresponse, Statistics Sweden (1980), and are 
familiar to methodologists at Statistics Sweden. All of them are derivable 
from the calibration approach, for simple formulations of the  x k -vector, as 
illustrated in Section 6.6. 
 
But it should be emphasized that when the calibration approach is applied in 
survey practice, there is no need to derive formulas for specific applications. 
All necessary computation is carried out by CLAN97, or a similar software, 
once the  x k -vector and the factor  kc   have been specified. 

 
As pointed out earlier, most surveys require estimation not only for the 
whole population but also for various domains of the population. When the 
survey has nonresponse, and reweighting is carried out by the calibration 
approach, then the estimation of the domain total  Yd   proceeds as follows: 
  
If the auxiliary information consists of the known vector total  ∑U kx , a set 

of calibrated weights are given by (6.3.3). They were used in (6.3.2) to 
produce an estimator of the whole population total  Y. Now, for the domain 
total  Yd , we keep the same weights and change only the study variable from  
y  into yd , defined by (4.1.2). The resulting calibration estimator of the 
domain total  Yd   is therefore 
 
�Y w ydW kr dk= ∑

         
(6.3.8)  

 
with  w d vk k k=   where  vk   is given by (6.3.3).  
 
In some applications the domains of interest  U U Ud D1 ,..., ,...,   form a 
partition of  U, as when the domains are  D  regions making up a country. 

The  D  domain estimates  � ,..., � ,..., �Y Y YW dW DW1   then have the appealing 
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property that they add up to the calibration estimate made for the whole 

population, that is, �YW   given by (6.3.2). This property follows from 
 

Wkr k

D

d
dkr kdk

D

d
r k

D

d
dW YywywywY ˆˆ

111
==== ∑∑∑∑∑∑

===
 

 
Similarly, we can adapt the calibration estimator (6.3.6), which has auxiliary 
information up to the sample level only. The calibrated weights are then  

skk vd , as in (6.3.6). To arrive at an estimator of the domain total  Yd , we 

again preserve the weights and substitute  yk   for  ydk . The result is   
 

∑= r dkskkdWs yvdŶ         (6.3.9)
 

  

 

6.4. Variance estimation under the calibration approach 

For statements of precision and confidence intervals, we need to estimate the 
variance of the different calibration estimators introduced in the preceding 
section. We rely on an analogy with the estimator (6.1.2) for two-phase 
sampling. An appropriate variance estimator for (6.1.2) is given by formula 
(9.7.22) in Särndal, Swensson and Wretman (1992). It assumes that the first 
and second order response probabilities, kθ   and the  klθ   are known. In the 

calibration approach, inclusion probabilities do not even enter the picture. 
Nevertheless, proxies for the inclusion probabilities are needed for variance 
estimation as we now explain. 
 

To estimate the variance of  �YW , we propose to use formula (9.7.22) of 

Särndal, Swensson and Wretman (1992) as follows:  (i) replace  
askπ   by  

kθ   and then  kθ   by the proxy value  kθ̂ = skv/1  , where  vsk   is given by 

(6.3.7), and  (ii) assume elements to respond independently, so that  

lkkl θθθ = . The rationale for (i) is given in Appendix B; for further detail, 

see Lundström and Särndal (1999) and Lundström (1997). We arrive at the 
following variance estimator: 
 
�( � ) � �V Y V VW SAM NR= +         (6.4.1) 

 
where  



6. Reweighting for nonresponse 

71 

 
( )( )∑∑ −−= lsllkskkr kllkSAM evgevgdddV )(ˆ  

 
( ) 2))(1(1 kkskskkr k egvvdd −−− ∑       (6.4.2) 

 
and 
 

∑ −= r kskskkNR evvdV 22 )1(ˆ        (6.4.3) 

 
where  skv   is given by (6.3.7), 

 

vkkk ye Bx ˆ′−= ;         (6.4.4) 

 
( ) ∑∑ −′= r kkkskkr kkkskkv ycvdcvd xxxB 1ˆ      (6.4.5) 

 
and  gk   is given by (4.3.4). 
 
The variance estimator (6.4.1) has two components, an estimate of the 
sampling variance, SAMV , and an estimate of the nonresponse variance, VNR ; 

see Section 5.2. When (6.4.1) is used for computing confidence intervals, 
there is an implicit assumption that the conditional nonresponse bias, cB , is 

small. If the bias is considerable, the true confidence level of an interval 

centred on  �YW   and computed with the aid of (6.4.1) may be rather far from 

the desired  1 - α  level. For a nearly correct confidence level, it is important 
that the bias is near zero, or is at least only modest. 
 
Remark 6.4.1. Remark 4.4.1 stated that the variance estimator (4.4.3) of the 
GREG estimator often suffers from some negative bias in not-so-large 
samples and suggested the use of an alternative denoted  ( )GREGadj YV ˆˆ . The 

variance estimator (6.4.1) has the same weakness as (4.4.3). As proposed in 
Remark 4.4.1, the underestimation is attenuated by using instead the 
residuals  kkkadj efe =, , where  kf   adjusts for a loss of degrees of freedom.   

� 
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Next, consider the calibration estimator  �YWs , given by (6.3.6). Appendix B 
provides a rationale for the following variance estimator:  
 
�( � ) � �V Y V VWs SAM NR= +         (6.4.6) 

 
where  
 

( )( )−−= ∑∑r lslkskkllkSAM yvyvdddV )(ˆ  

 

( )− − −∑ d d v v ykr k sk sk k1 1 2( )        (6.4.7) 

 
and 
 

∑ −= r kskskkNR evvdV 22 )1(ˆ        (6.4.8) 

 
Finally, we need to address the domain estimators, dWŶ   given by (6.3.8) and  

dWsŶ   given by (6.3.9). An appropriate variance estimator for  dWŶ   follows 

easily by replacing  yk   by  ydk   throughout the calculations defined by 
(6.4.1) to (6.4.5). That is, in (6.4.2) and (6.4.3) we replace  ek   by  
 

dvkdkdk ye Bx ˆ′−=          (6.4.9) 

 
where 
 

dvB̂  = ( ) dkkkskr kr kkkskk ycvdcvd xxx ∑∑ −′ 1     (6.4.10) 

 

A similar argument produces a variance estimator for  dWsŶ   given by 

(6.3.9).  
 

6.5. Software for computing point estimates and variance 
estimates 

Two steps need to be considered: computing the point estimator and 
computing the corresponding variance estimator.   
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When the auxiliary information consists of the known total  x kU∑ , the 

point estimator of the population  y-total is  �YW , given by (6.3.2), and that of 

the domain total is  dWŶ , given by (6.3.8). Both are easily computed by 

CLAN97, for the sampling designs in common use at Statistics Sweden.  
 
The corresponding variance estimates are also computed by CLAN97 
according to the two-component formula (6.4.1), in the case of  �YW . This 

step requires two additional sets of weights, the  skv   given by (6.3.7) and 

the  gk   given by (4.3.4).  
 
CLAN97 can also compute point estimates and variance estimates for more 
complex parameters, built as certain types of functions of totals. Consider 
the parameter  ),...,...,( 1 Qq YYYf=ψ , where  f  is a specified function of the  

Q  population totals  Y Y Yq Q1 , . . . , , . . . . In particular, rational functions are of 

interest in many surveys. (A rational function is one that is limited to use of 
the four basic algebraic rules, addition, subtraction, multiplication and 
division.) An example of such a parameter is a difference of ratios, 

4321 // YYYY −=ψ . For any rational function of totals, CLAN97 can 

compute  (i) the point estimate determined as  )ˆ,...ˆ,...,ˆ(ˆ 1 Qq YYYf=ψ , where  

� , . . . , � , . . . �Y Y Yq Q1   are the respective calibration estimates of the  Q  totals 

(population totals or domain totals), and  (ii) the corresponding variance 
estimate.  
 
Several sampling designs are implemented in CLAN97. They include SRS 
and STSRS (of elements or of clusters), probability-proportional-to-size 
sampling, and two-phase sampling for stratification. The variance 
computation for pps sampling uses an approximate formula. CLAN97 also 
handles network sampling of the type arising when individuals are sampled 
from the TPR (see Example 2.2.1) and the observational elements are the 
households formed around the selected individuals. Sampling designs in two 
or more stages are not yet implemented in CLAN97, because such designs 
presently find little or no application at Statistics Sweden. 
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6.6. Examples of calibration estimators 

In survey practice, we can always, for any specified  x k -vector, use 
CLAN97 to compute the calibration estimators defined in Section 6.3. There 
is just one general approach. Specific formulas need never enter the picture. 
But many methodologists are accustomed to specific formulas 
corresponding to particular “methods” for nonresponse reweighting. 
Therefore, the objective with this section is to show that the calibration 
approach reproduces formulas that many readers are familiar with. Thus, we 
derive the explicit form of (6.3.2) and (6.3.6) for some simple specifications 
of the auxiliary information and show that commonly used estimators are 
obtained. We start with the simplest forms of  x k , then gradually increase 
the auxiliary information content and thereby also the complexity of the 
formulas. We examine only a very limited subset of all the different 
possibilities covered by (6.3.2) and (6.3.6) when  x k   is allowed to vary. For 
simplicity, the following example assume the SRS design, so that  

nNdk /=   for all  k, where  n  is the sample size. We start with the simplest 

formulation of  x k .  
 
The simplest auxiliary vector 

The simplest formulation of the auxiliary vector is  x k  = 1  for all  k. This 

vector recognises no differences among elements. Specifying also  1=kc   

for all  k, (6.3.3) gives the weight  v n mk = /   for all  k, so the calibration 
estimator (6.3.2) becomes   
 

WŶ  EXPr k Yy
m

N ˆ∑ ==         (6.6.1) 

 
The subscript EXP reflects the often-used term expansion estimator. 

Clearly, �YEXP   is a primitive estimator, often misleading because of a large 
bias. Nevertheless, it may occasionally find use in practice, namely, if no 
useful auxiliary information is available and nonresponse is, for good 
reasons, considered as occurring at random. Also, it is sometimes computed 
in a survey as a benchmark estimator to which better alternatives can be 
compared. In Statistics Sweden (1980), the technique is called “straight 
expansion” (“rak uppräkning”).  
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One-way classification 

In this formulation the target population  U  is divided into non-overlapping 
and exhaustive groups, U p , p P= 1,..., , based on a specified classification 

criterion, for example, age by sex groups. The auxiliary vector for element  k  
is the group identifier  x k k pk Pk= ′( ,..., ,..., )γ γ γ1   where, for  p P= 1,..., ,   

 



 ∈

=
otherwise       0

   if        1 p
pk

Uk
γ        (6.6.2) 

 

We have  ( )xk p PU N N N=
′

∑ 1 ,..., ,..., , where  pN   is the size of  U p . 

Thus the requirement that the population auxiliary total be known is 
tantamount to requiring that the  P  group sizes be known. Letting  1=kc   

for all  k, we obtain from (6.3.3) 
 
v N n Nmk p p= /    for  k rp∈        (6.6.3) 

 
and the calibration estimator (6.3.2) becomes 
 

�Y N yW p r
p

P

p
=

=
∑

1
= �YPST         (6.6.4) 

where  ∑=
pp r k

p
r y

m
y

1
  and  pm   being the number of respondents in 

group p. 
 
This estimator is commonly called the poststratified estimator, so we denote 

it by  �YPST . The term is mildly misleading in that the traditional poststratified 
estimator is defined with reference to a single phase of sampling. 
Recognising this, Kalton and Kasprzyk (1986) make a distinction between 
the poststratified estimator, as used for the case of full response in single-

phase sampling, and  �YPST   given by (6.6.4), which they call the population 
weighting adjustment estimator. In the latter, more accurate term lies a 
recognition of a sampling phase followed by a nonresponse phase. Several 
authors have discussed this estimator, including Jagers (1986), Bethlehem 
and Kersten (1985) and Thomsen (1973, 1978). 
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When knowledge of the auxiliary vector  x k k pk Pk= ′( ,..., ,..., )γ γ γ1   is 

limited to the elements of the sample s, the estimator  �YWs , given by (6.3.6), 

can be used. Letting  1=kc   for all  k, we obtain 

 

pr

P

p
pWs yNY ∑

=
=

1

ˆˆ = �YWCE         (6.6.5) 

with  pp n
n

N
N =ˆ , where  pn   is the number of sampled elements in group p. 

Known as the weighting class estimator, and therefore denoted by  �YWCE , it 
is also an often discussed estimator; see, for example, Oh and Scheuren 
(1983), Kalton and Kasprzyk (1986), Little (1986), Statistics Sweden 
(1980). It can be described as “expansion by groups, using the response 
rate”, the term used in Statistics Sweden (1980) being ”gruppvis uppräkning 
med andel svar”.   
 
Remark 6.6.1.  The concept of Response Homogeneity Groups (RHGs) was 
defined in Section 6.1. Estimators derived from the RHG model for response 
can be computed by CLAN97 in the following situations. Suppose first that 
an SRS is drawn and partitioned into a set of predefined RHGs. Define  kx   

to be the RHG identifier vector, observed for the sample elements only, let  
1=kc   for all  k, and assume no other auxiliary information. The resulting 

estimator is then  �YWCE   as given by (6.6.5), where  p  now denotes the RHG 
index. Now, in a typical survey at Statistics Sweden, group counts are 
usually known at the population level, and profiting from this more 
extensive information we obtain instead  �YPST   as given by (6.6.4), where  p  
is again the RHG index. Both (6.6.4) and (6.6.5) can be computed by 
CLAN97. They have the same nonresponse bias, but (6.6.4) usually has the 
smaller variance, since the information is at a higher level. CLAN97 also 
computes estimates for the STSRS design, allowing a set of RHGs to be 
defined within each stratum. 

� 
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A single quantitative variable 

Assume that a quantitative auxiliary variable  xk   is available, for example, 
the number of employees of enterprise  k  in a business survey,  Nk ,...,1= . 

Its population total, ∑U kx , is assumed known. If this is the only auxiliary 

variable, the auxiliary vector is uni-dimensional, x k kx= . If we also specify  

c xk k= −1 , the estimator obtained from (6.3.2) is 
 

RA
r

r

U kW Y
x

y
xY ˆ)(ˆ == ∑         (6.6.6) 

 

where  ∑= r kr y
m

y
1

, and  rx   is defined analogously. It has the well-

known form of a ratio estimator, hence the notation  RAŶ . Note, however, 
that the ratio estimator usually discussed in textbooks is (4.5.1), which is the 
full-response version of (6.6.6), obtained when  sr = . Under SRS, (4.5.1) is 
unbiased, but such a property cannot be claimed for (6.6.6), because of the 
nonresponse.  
 
With the same information, we can alternatively formulate the auxiliary 
vector as  x k kx= ′( , )1 . This option exists, because the auxiliary 

information required, in addition to  ∑U kx , is the population size, 

∑= UN 1, which is known. When  ck = 1  for all  k, (6.3.2) gives  

 
( ) REGrrW YBxXyNY ˆ}ˆ{ˆ =−+=       (6.6.7)  

where  ∑= U kx
N

X
1

  and  

=B̂ 



 − ∑ ∑∑ r r kkr kk xy

m
xy

1
/ 



 − ∑∑ r kr k x

m
x 22 )(

1
  

 
The notation  REGŶ   is used to indicate the regression estimator form. The 

estimator is discussed, for example, in Bethlehem (1988). The classic simple 
regression estimator found in standard textbooks is (4.5.2), which is the 
special case of (6.6.7) obtained for  sr = . 
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One-way classification combined with a quantitative variable 

In this application, the auxiliary information concerns a  P-valued 
categorical variable and a quantitative variable, x, which may be an indicator 
of the size of an element. Assume that we can place every sampled element  
k  into the appropriate group, that we know its value  kx , and that for each 

group, Pp ,...,1= , we know the size, pN , and the x-total, ∑
pU ky . There 

are more than one way to use this information. One option is to define the 
auxiliary vector as  
 
x k k k pk k Pk kx x x= ′( ,..., ,..., )γ γ γ1    

 
where  pkγ   is defined by (6.6.2). The population total of  kx   is then the 

vector composed of the  P  known group sums  ∑
pU kx . It is true that this 

formulation of  kx   ignores the information about the group sizes  pN , and 

this may amount to a nonnegligable waste of information. Nevertheless, it 
leads to a well-known estimator, because if we let  c xk k= −1 , (6.3.2) 
becomes  
 

∑ ∑
=

=
P

p r

r

U kW

p

p

p x

y
xY

1

)(ˆ
SEPRAŶ=       (6.6.8) 

where  ∑=
pp r k

p
r y

m
y

1
  and  

prx   is analogously defined. Thus, �YSEPRA   has 

the well known form of a separate ratio estimator, that is, one that is built 
as a sum of ratio estimators, one for each group.  
 
If the auxiliary information goes only up to the level of the sample s, we get 

from (6.3.6)  ∑ ∑
=

=
P

p r

r

s kWs

p

p

p x

y
x

n

N
Y

1

)(ˆ , which is also commonly used and can 

be described as “weighting by groups using a size variable”; see Statistics 
Sweden (1980), p. 3:12. 
 
To take advantage of the complete information, the sizes  pN   as well as the  

x-totals  ∑
pU kx , we should instead formulate the auxiliary vector as 
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x k k pk Pk k k pk k Pk kx x x= ′( ,..., ,..., , ,..., ,..., )γ γ γ γ γ γ1 1   

 
Then, if we let  ck = 1  for all  k, the estimator (6.3.2) becomes 
 

( ){ }∑
=

−+=
P

p
prprpW BxXyNY

pp
1

ˆˆ
SEPREGŶ=     (6.6.9) 

 

with  X
N

xp
p

kU p
= ∑

1
  and  

2
ˆ

p

p

xr

xyr

p
S

Cov
B =       

where 
 












−

−
= ∑ ∑∑

p ppp r r kk
p

r kk
p

xyr xy
m

xy
m

Cov
1

1

1  

and 
 












−

−
= ∑∑

ppp r k
p

r k
p

xr x
m

x
m

S 222 )(
1

1

1  

 
The estimator (6.6.9) is another well-known form, namely that of the 

separate regression estimator; consequently, the notation is  �YSEPREG . 

Two-way classification 

In practice it is common to have information on two or more categorical 
auxiliary variables. We discuss the case of  two categorical variables. The 
reasoning can be extended to a multi-way classification. 
 
Suppose there are  P  categories of the first factor, for example, a 
geographical classification, and  H  categories of the second, for example, a 
socio-economic classification. We can think of the population  U  as 
partitioned into to  P × H  subsets or cells, U ph ; p P= 1,..., ;   h H= 1,..., . 

Depending on the information available about the cells, several formulations 
of the kx -vector are possible. 

 
Consider the auxiliary vector formulation 
 
x k k pk Pk k hk Hk= ′( ,..., ,..., , ,..., ,..., )γ γ γ δ δ δ1 1     (6.6.10) 
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where the  γ 's  indicate the first classification with  P  groups and the  δ 's  

indicate the second classification with  H  groups. Specifically, pkγ   is 

defined by (6.6.2), and, for,  h H= 1,..., , 
 

δhk

k h
=

∈



1

0

if element group

otherwise
     (6.6.11) 

 
It is easily seen that this formulation of  kx   requires knowledge of the  

HP +   marginal group counts, .pN ( )= ∑
=

N ph
h

H

1
, Pp ,...,1= , and  

hN . ( )= ∑
=

N ph
p

P

1
,  h H= 1,..., . With this formulation, we can treat three 

commonly occurring situations (see also Example 4.5.2):  
 
(i)  The  P × H  cell counts, N ph , p P= 1,..., ;  h H= 1,..., , are known, but it 

is considered that the set of  P + H  marginal counts, .pN , p P= 1,..., , and  

hN . , h H= 1,..., , contain almost as much information.  

 
(ii)  The  P × H  cell counts, N ph , p P= 1,..., ;  h H= 1,..., , are known, but a 

number of them are extremely small or zero, a situation frequently arising in 
practice. Collapsing of cells, although a commonly used remedy for this 
problem, could cause a non-negligible loss of auxiliary information. It may 
then be preferable to simply use the margin totals. 
 
(iii)  The marginal counts, the  .pN   and the  hN. , are known, but not the 

cell counts  N ph . An example of this happening in practice is when the  .pN   

and the  hN.   are taken from two different registers.  

 
Under the formulation (6.6.10) of the  xk -vector, the calibration approach 

estimator, WŶ   arising from (6.3.2), has no simple form. Computationally, it 

however easy to obtain this estimator in any given application, using 
existing software such as CLAN97. 
 
A general discussion of calibration for cross-classifications in the full-
response case is found in Deville, Särndal and Sautory (1993). 
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An alternative treatment of the same auxiliary information as that required 
by (6.6.10) (that is, the  P + H  marginal counts) is the raking ratio method, 
which is also a well-known procedure; see, for example, Oh and Scheuren 
(1983). The raking ratio method does not give identically the same point 
estimator as the calibration approach estimator (6.3.2), but they differ by 
very little, in most situations.  
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7. Imputation 

7.1. Introduction 

7.1.1. Types of imputed values 

Imputation is the procedure whereby missing values for one or more study 
variables are “filled in” with substitutes. These substitutes can be 
constructed according to some rule, or they can be observed values but for 
elements other than the nonrespondents. Thus imputed values are artificial; 
they contain error. Imputation error is similar to measurement error (as 
when a respondent provides an erroneous value for an item on a 
questionnaire) in that the true value is not recorded. But unlike measurement 
error, imputation error occurs “by construction”, since the statistician 
knowingly inserts a value that is more or less wrong. 
 
Another term used in connection with constructed values is derived 
variable. For legal reasons, imputation is not always allowed at Statistics 
Sweden, but derived variables are allowed. Therefore it is important to know 
the difference between an imputed value and a derived value. In Section 7.4 
we discuss the Swedish legislation and define the terms in more detail.   
 
Another type of artificial value construction practiced by some statistical 
agencies is mass imputation. In this procedure, values are imputed not only 
for the sampled elements, but for all non-observed elements in the 
population. Mass imputation is not discussed here. 
 
Imputed values can be classified into three major categories: 
 
(i)  values constructed with the aid of a statistical prediction rule; 
(ii)  values observed not for the nonresponding elements themselves, but for 
(similar) responding elements; 
(iii)  values constructed by expert opinion or “best possible judgment”. 
 
Categories (i) and (ii) can be termed statistical rules, because they use a 
statistical technique to produce a reasonably close substitute value. Category 
(i) is often based on regression prediction. Category (ii) methods can also be 
described as donor-based, in that the value of another observed element is 
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imputed. Category (iii) methods are more subjective and often rely heavily 
on expert skill. 
 
By another often-used distinction, imputed values are either deterministic 
(when repeating the imputation procedure would yield exactly the same 
imputed values) or random (when repeating the procedure would, barring 
pure chance, yield different imputed values). Regression imputation is an 
example of a deterministic rule, whereas an example of a random method is 
to impute the value of a randomly selected observed element (this is called 
“hot deck imputation”; see below). 
 
Categories (i), (ii) and (iii) are presented in more detail in the following. 
 
Imputation is regarded by many – both statisticians and subject-matter 
specialists – with some suspicion. This is because it goes against common 
statistical sense to use values known at the outset to be more or less wrong. 
 
Nevertheless, there is no convincing evidence that careful imputation does 
any more harm to the quality of survey estimates than the reweighting 
methods described in Chapter 6. Both procedures lead to estimates with 
some - hopefully small - bias. Imputation may sometimes give better results, 
as when, for a highly skewed population (such as those occurring in many 
business surveys), expert judgment can be relied on to get a “close” imputed 
value for a large, influential nonresponse element.  
 
The choice between reweighting and imputation is perhaps not so much the 
central issue as rather the threat posed to the quality of the survey estimates 
by two undesirable circumstances, namely (i) that a nonnegligible 
nonresponse has occurred and (ii) that a less than perfect approach 
(reweighting or imputation) is used to “correct” for the nonresponse. Thus, 
the quality of the estimates is at stake if survey managers become 
complacent and uncritical about the amount of nonresponse they tolerate in 
their survey and about the methods (reweighting or imputation) they use to 
treat the nonresponse that has occurred.  
 
It goes without saying that the construction of imputed values should be 
carried out with professional care. The imputed values must come as close 
as possible to the true unobserved values for which they are substitutes. 
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7.1.2. The objective of imputation 

An often-mentioned justification for imputation (rather than reweighting) is 
that it produces a rectangular data set. There are usually several (or many)  
y-variables in a survey. Each record (each element) defines a row in a data 
matrix with  J  columns, where  J  is the number of  y-variables. If there are  
n  records, we have an  n  by  J  data matrix, which, before imputation, 
contains a number of “holes” caused by missing  y-values. 
 
It is an advantage if all variables can be treated in a uniform manner in the 
production of statistics and if the same weighting can be applied to all 
variables when estimates are made. With imputation, this becomes possible. 
 
There are two frequently used approaches for imputation, both leading to 
rectangular data matrices, namely the ITIMP-approach and the UNIMP-
approach. (These approaches, and the concepts of item nonresponse and unit 
nonresponse, were defined in Section 2.2):  
 
ITIMP-approach: Imputation is used to treat the item nonresponse only. In 
this procedure, we impute values for the  m   elements for which at least one 
but not all  y-values are missing. The resulting rectangular data matrix has 
the dimensions  m   by  J. Reweighting is then applied to compensate for the 
unit nonresponse.  
 
UNIMP-approach: Imputation is used for both item nonresponse and unit 
nonresponse. In this procedure, we impute for all elements having at least 
one  y-value missing. The resulting completed rectangular data matrix has 
the dimensions  n  by  J , where  n  is the sample size. There is no 
nonresponse weight adjustment. 
 
In the UNIMP-approach, when estimates are produced from the completed 
data matrix, other weights also enter into consideration:  
 
(i)  sample weighting generated by the sampling design, and, if applicable,   
(ii) g-weighting (see (4.3.4)) to take into account any available auxiliary 
information at the population level.  
 
In the rest of this chapter, we discuss, without loss of generality, in terms of 
a single  y-variable.  
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EXAMPLE 7.1.1. Illustration of the terminology. 

The following simple example illustrates some of the terminology. Suppose 
that there is only one  y-variable and that every missing value is imputed by 
the average of the respondent  y-values. The data set after imputation (the 
completed data set) will then consist of  m  actually observed values, yk ,  k 

∈ r,  and  n - m  imputed values, all of which are equal to  y y mr kr= ∑ / . 

As is intuitively clear, the method is not very efficient and is not 
recommended in a survey with high requirements for quality. It does realise 
one objective, namely, to obtain a completed data set. It is easy to identify 
several shortcomings of this data set. In most cases neither the central 
tendency nor the variance of these data will agree with what is expected of a 
data set with 100% response. The variance will be unnaturally small, 
because  n - m  missing values have been imputed by one and the same 
value, the respondent mean  yr . Also, the central tendency of these data will 
often not reflect the true central tendency of the  y-variable: If, for example, 
large  y-value elements respond less often than small  y-value elements, then 
the average for the completed data set is likely to fall short of the mean of a 
data set with 100% response. If instead we impute the value of a randomly 
selected responding element (the “donor element”), then the variance of the 
completed data set will look more “normal”. But the central tendency will 
have the same shortcoming as in imputation by the respondent mean. Also, 
since the donor is randomly selected, we run the risk of imputing the value 
of a very large element by that of a very small element, so the “closeness” of 
any individual imputed value is often compromised by this procedure. 

� 
 

7.1.3. The completed data set  

There exist many imputation methods. Some of the more common ones are 
reviewed and discussed in the following. Each method has a number of 
variations. A minor variation of a well-established method may be required 
to meet the particular needs and requirements of a given survey.  
 
We shall first discuss imputation and its consequences within a framework 
that is sufficiently general to cover the various imputation techniques that 
are in common use.  
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As before let  U, s  and  r  denote, respectively, the target population, the 
probability sample drawn from  U, and the response set realised from  s. The 
nonresponse set is denoted  rso −= . Denote by  yk   the value of the 
variable  y  for element  k. If element  k  is a nonrespondent and imputation 
is used for this element, we denote the imputed value as  �yk . More than one 
imputation method may be used in the same survey, so not all  �yk   may 
result from the same method. 
 

The completed data set is defined as the set of values  { }y k sk• ∈: , where 

 

y
y k r

y k ok

k

k
• =

∈
∈





for  

for �
       (7.1.1) 

 
That is, the value  y k•   equals the observed value  yk   when  k  is a 
respondent, or the imputed value  �yk   when  k  is a nonrespondent. 
Traditional descriptive statistics (mean, variance, and so on) can be 
computed from the completed data set. For example, the mean of the 
completed data set, y y ns ks• •= ∑ / , can be computed. A different mean, not 

computable, is the one that would have been computed in the case of 100% 
response, namely, y y ns ks= ∑ / . Both means are based on  n  values, but 

they will (barring pure chance) differ, to an unknown extent. Similarly, we 
can compute a variance and other standard statistics from the completed data 
set. They will differ from their counterparts for a hypothetical data set of 
100% observed values. 
 

7.2. Point estimation when imputation is used  

7.2.1. The estimator 

We discuss imputation in the context of estimating the population total for 
the variable  y , ∑= U kyY . Suppose that we consider that imputed values 

are as “good” as true observations. Such a belief is a justification for using 
exactly the same estimation method as in the ideal case of 100% response. 
We will employ the “standard estimator formula” and simply apply it to the 
completed data set. Consequently, when an estimate is computed, element k 
will receive the same weight whether its recorded  y-value is a true 
observation, yk , or an imputed value, �yk . This is worth pointing out, 
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because some would argue that imputed values should be weighted 
according to some principle other than that used for truly observed values.   
 
Current practice for point estimation is in fact that survey statisticians treat 
imputed data as real, observed data. That is, the procedure is: determine an 
estimator suitable for 100% response, then, after imputation, compute this 
estimator for the completed data set. 
 
The estimator intended for use in the case of 100% response will be called 
the full response estimator. Here we assume that this estimator is the GREG 

estimator discussed in Section 4.3. It is of the form  �Y  = ∑s kkk ygd   as 

described by formulas (4.3.3) and (4.3.4). A special case is the Horwitz-

Thompson estimator, �Y  = ∑s kk yd , discussed in Section 4.2. 

 
Now suppose there is nonresponse treated by imputation. We then have a 
completed data set, given by (7.1.1). It replaces the desired (but not realised) 
data set composed of 100% real observations. We apply the weighting, 
d gk k , of the full response estimator (4.3.3). This gives the imputed GREG 
estimator 
 
�YI  = ∑ •s kkk ygd          (7.2.1) 

 
which can also be written as 
 
�YI = ∑∑ + o kkkr kkk ygdygd ˆ        (7.2.2) 

 
In current practice, point estimation in the presence of imputation is thus 
very simple, since the weights are not changed. By contrast, variance 
estimation becomes a complex issue, as discussed in Section 7.3. The 
imputed HT estimator is   
 
�YI  = ∑ •s kk yd          (7.2.3) 

 

7.2.2. Statistical rules versus expert judgment 

At statistical agencies, imputation is usually motivated by a desire to provide 
the “best possible imputed value” on an element by element basis. In other 
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words, imputation is practiced to provide good data at the micro level, rather 
than at some aggregated level.  
 
Three categories of imputation methods were mentioned in Section 7.1.1:  
(i) imputation by applying a statistical prediction rule;  (ii) imputation by 
inserting the value of a donor element;  (iii) imputation by expert opinion or 
“best possible judgment”. For most elements, in particular small to medium-
sized elements, imputation is usually carried out by one or more of the 
methods in categories (i) and (ii), using a computerised routine. Category 
(iii) is usually reserved for a small number of large and influential elements, 
paying special attention to the characteristics of these elements. It is always 
debatable what constitutes the “best possible” imputation for any given 
element. There is usually more than one possibility.  
 
The following example illustrates the difference between statistical 
imputation (categories (i) and (ii)) and “special imputation” (category (iii)). 
 
EXAMPLE 7.2.1.  The difference between statistical imputation and 
“special imputation”. 

Large elements are influential in that their impact on published survey 
estimates can be considerable. Consider a business survey in which a very 
large enterprise happens to be a nonrespondent and requires imputation. 
Since this enterprise is large compared to other enterprises in the same 
industry group (for example, an SIC code category), a simple imputation 
based on the respondent mean for this group would yield a large negative 
imputation error, kk yy −ˆ , for this element. Similarly, the respondent mean 

for a group of enterprises considered “large” might also be misleading, 
because an enterprise that is “large” in one industry may have very different 
characteristics (Gross Business Income, for example) than one that is “large” 
in another industry. Even imputing the respondent mean of an industry-by-
size group may be considered unsatisfactory. The value of a donor element 
identified as the “closest neighbour” may also be an imprecise imputation, 
because in the upper tail of the distribution, even the closest element may be 
numerically very different. A better approach may be a combination of 
historical examination and subjective (“expert”) judgment. Thus, one might 
start by examining the series of earlier reported values, in particular the most 
recently reported value, and then adjust this value in the light of the best 
available judgment about trends in the industry and in the economy in 
general. The justification for this procedure is that truly large enterprises are 
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often so unique that none of the statistical rules are likely to “come close”. 
This practice will often require excellent skill and judgment. 

� 
  

7.2.3. Imputation practices based on a statistical rule 

General comments 

Some of the more commonly used statistical rules are: 
 
 -  ratio imputation; 
 -  (multiple) regression imputation; 
 -  nearest neighbour imputation; 
 -  hot deck imputation; 
 -  respondent mean imputation. 
 
For each of these there are several minor variations, as explained later. 
 
The first three rules require auxiliary information. We refer to the auxiliary 
vector as the imputation vector in order to distinguish it from the possibly 
different auxiliary vector  xk   appearing in the GREG full response 
estimator. We denote by  z  the imputation vector and by  zk   its value for 
element  k. The vector  zk   is composed of one or more imputation variable 

values. When  z  is univariate, the notation will be  z  and  zk , respectively. 
The imputation vector is instrumental in producing the imputed values  �yk . 
If the imputation variable(s) are strong predictors for the imputed variable  y, 
we can expect “close” imputations, that is, the imputation errors, kk yy −ˆ , 

should be small. All three rules give deterministic imputations. 
 
Nearest neighbour and hot deck are donor-based methods, which means that 
we impute a value that was actually observed, but for a different element. 
The advantage that this brings – perhaps not a very great advantage – is the 
assurance that the imputed value is one that can occur; it is not an 
impossible value. Hot deck, as described below, is a random imputation 
method, while nearest neighbour is deterministic.  
 
Imputation for qualitative variables merits a special comment. Consider the 
case of a dichotomous study variable that indicates the presence or absence 
of a given property, such as “employed” or “unemployed”, with values 1 and 
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0, respectively. In order to meet the requirement of being a value that 
actually occurs, the imputed value should be either a 1 or a 0. Hot deck and 
nearest neighbour have the advantage that they satisfy this requirement. In 
contrast, multiple regression imputation and its special cases will normally 
impute values other than 0 or 1. For example, a simple procedure is to 
impute values using the response rate within groups, so that the imputed 
value is  � /y m nk g g=   for all nonresponding elements in group  g. These 

imputed values may in some sense be “good on average”, but for any one 
particular element, the rule produces an “impossible” value. The same holds 
true when imputation is based on the often used logistic regression model; 
the imputed value for element  k  is then of the form  

[ ] 1
)ˆexp(1)ˆexp(ˆ

−
′−+′−= �z�z kkky , where  �̂   is a parameter estimate based 

on data available for the elements in the sample. As long as imputation is 
only used to produce statistics for aggregates, there is, however, no clear-cut 
disadvantage in imputing “impossible” values. 
 
Imputation by a statistical rule is often carried out mechanically using 
computer software. An example is Statistics Canada's Generalized Editing 
and Imputation System (GEIS) software. Such mechanical imputation is 
often performed within imputation groups. These groups have to be 
identified at the outset. An imputation group is one deemed to consist of 
“similar elements”. 
 
Practitioners often impute according to a hierarchy of methods, such that a 
stronger method (likely to produce “closer” imputations) is first applied 
within one group of nonrespondents, then, if the auxiliary information 
required for this preferred imputation is not at hand for all elements, the 
second strongest method is applied within the next group, and so on.  
 
It is clear that imputation is often motivated by the statistician's perception 
of a (regression) relationship between the study variable, y, and the 
imputation vector, z, used to construct “close” imputed values. From this 
perspective we now examine the five imputation methods listed previously. 
 
The formulas assume that all elements  k o s r∈ = −   are imputed by the 
same method, which amounts to saying that there is only one imputation 
group, the whole sample set  s. The case of two or more imputation groups 
will be discussed later in the section. 
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(Multiple) regression imputation  

The imputed value for element  k  is  
 

�z ˆˆ kky ′=           (7.2.4) 

 
where  zk   is the value of the imputation vector for element  k, and  
 

( ) ∑∑ −′= r kkkr kkk yqq zzz�
1ˆ        (7.2.5)  

Here  �̂   is a vector of regression coefficients, resulting from the fit of a 

multiple regression using the data  ( , )yk kz   available for  k ∈ r, and 
weighted with suitably specified  qk .  
 
In the special case where  zk = ( , )1 zk ′ , the imputed value takes the form  

kk zy �̂�̂ˆ += , corresponding to the fit of a simple linear regression with an 

intercept.  
 
Two other important special cases are ratio imputation and respondent mean 
imputation.   
 
Remark 7.2.1. An interesting version of multiple regression imputation is 
GREG-conformable multiple regression imputation. We mean by this term 
that the multiple regression imputation (7.2.4) is specified to agree with the 
full response GREG estimator (4.3.3) in regard to the weighting and the 
auxiliary vector (the imputation vector). That is, in formula (7.2.4) for  �yk , 
the weighting is chosen as  q d ck k k=   and the imputation vector as  
z xk k= . When this imputation is used in (7.2.1), the resulting imputed 

estimator  �YI   has an interesting property: it is identical to the calibration 

estimator  �YW   determined by (6.3.2). This result is rather exceptional, as in 
general reweighting and imputation do not give identical results. The 
property is formulated more explicitly as follows:  
 
Consider the imputed GREG estimator (7.2.1) where we use regression 
imputation according to (7.2.4) with  q d ck k k=   and  z xk k= . Then the 

resulting imputed GREG estimator  �YI   is identical to the calibration  
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estimator  �YW   given by (6.3.2), that is, �YI  = �YW   for every possible response 

set  r. (We assume that the same  ck   and  x k   are used in both  �YI   and  
�YW .) A proof of this property is given in Appendix D.   

 
Note that while the GREG estimator is unbiased for full response, the 
imputed GREG estimator will have some (unknown) bias, even if the 
regression imputation is GREG- conformable. 
 
GREG-conformable multiple regression imputation is of interest for another 
important reason: it offers a convenient method for variance estimation. The 
argument is as follows. For this type of imputation, we have  � �Y YI W= , 

where  �YW   is the weighting estimator (6.3.2). It follows that for the imputed 

estimator  �YI   we can use the variance estimator presented in Section 6.4 for 
the reweighting approach. That is, a variance estimator appropriate for  
� �Y YI W=   is  �( � )V YW   given by (6.4.1) to (6.4.5).   

 
By a similar argument, when the full response estimator is the HT estimator 
and the imputed values are given by (7.2.4), with q d ck k k=   and  z xk k= ,  

the imputed estimator is  WsI YY ˆˆ =  , where  WsŶ   is given by (6.3.6). It then 

follows that for this imputed estimator we can use the variance estimator 
given by (6.4.6) to (6.4.8). 

� 
 
Ratio imputation 

Assuming that  zk kz=   is an always positive, unidimensional imputation 

variable, and that q zk k= 1 / , the imputed value (7.2.4) becomes  �yk = �̂kz , 

with  ∑∑= r kr k zy /�̂ . This ratio imputation is often used when the same 

variable is measured on two different occasions in a repeated survey; y  is 
then the variable on the present survey occasion, and  z  is the same variable 
on the preceding occasion. To illustrate, if  y  and  z  represent “Gross 
Business Income” on the present occasion and the preceding occasion 

respectively, then the “current ratio”  �̂  measures the change in the business 
income level between the two occasions.  
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Nearest neighbour imputation 
The imputed value for element  k  is  �yk  = )(kly , where  l(k)  is the donor 

element for the nonresponding element  k, that is, the element that provides 
its  y-value as an imputed value for element  k. The statistical idea that 
motivates this method is that two elements whose  z-values are close should 
also have  y-values that are close. The donor for element  k  is identified by 
distance minimisation. Assuming a unidimensional imputation variable, z, 
define the distance from element  l  to element  k  as  klk zzD −=

"
. The 

donor  l(k)  is the element belonging to the set  r  such that  lkr D∈"min   is 

obtained precisely for  l = l(k). That is, the distances  lkD   are computed for 

all elements  l∈ r, and the donor element for  k  will be the one with the 
minimum distance  lkD . For element  k, we impute the donor's  y-value, that 

is, we let  �yk = )(kly . Since  l(k)  is the closest element (measured by this 

distance), it is fitting to call it the nearest neighbour of  k. If the imputation 
vector is multivariate, we can instead minimise a multivariate distance 

measure, for example, lkD =
2/1

1

2)( 




 −∑

=

J

j
jkjlj zzh , where the  jh   are 

specified to give a suitable weighting of the  J  components of the vector 
difference  kl zz − .  

 
In multiple regression imputation and nearest neighbour imputation, the 
hope for “close” imputed values rests on a strong relationship between the 
study variable, y, and the imputation vector  z. The next two methods, 
respondent mean imputation and hot deck imputation, do not use an 
imputation variable (or vector) and are therefore “weaker” and less likely to 
produce close imputations. Neither method is recommended when better 
alternatives exist. They may be used as “methods of last resort”, in the 
absence of a reasonable imputation variable. They will accomplish at least 
one of the objectives of imputation, that of creating a completed rectangular 
data matrix. 
 
Respondent mean imputation 

The imputed value for element  k  is  �yk  = yr   for all elements  k ∈ o, where  

y y mr kr= ∑ / . Since all imputed elements will thus receive the same 

imputed value, the distribution of the completed data will have a rather 
unnatural appearance, with a spike at  yr . It is easily seen that respondent 
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mean imputation is the special case of (7.2.4) obtained when  zk = 1  and  

1=kq   for all  k. 

 
Hot deck imputation 

The imputed value for element  k  is  �yk  = )(kly , where  l(k)  is a randomly 

selected donor from among all potential donor elements  l ∈ r. This is a 
donor-based, random imputation method. The distribution of the values of 
the resulting completed data set will look rather natural, but may still differ 
from the visual image obtained from the distribution of a complete sample 

of actually observed data, { }y k sk : ∈ , if these data had been available. This 

is because in hot deck imputation, every donor must necessarily be a 
respondent, and respondents and nonrespondents may be significantly 
different in regard to characteristics such as mean, variance, etc. 
 
Imputation groups 

Imputation is often performed within non-overlapping imputation groups, 
s g Gg , ,...,= 1 , whose union is the entire sample  s. Within each imputation 

group, the imputation is done by one and the same method. When 
imputation is performed within the group  sg , then  s, r  and  o = s - r  are 

replaced by, respectively, gg rs ,
 
and ggg rso −=

  
in the description of the 

methods above. 
 
We can distinguish two reasons, (a) and (b) in the following, for using more 
than one imputation group: 
  
(a)  Different relationships in different subgroups of the sample. The 
relationship between  y  and the imputation vector  z  may be deemed 
different in different subgroups of the sample. For example, if ratio 
imputation is used, the ratio “sum of  yk ” divided by “sum of  zk ” may 
differ appreciably in different parts of the sample, which would suggest ratio 
imputation within groups. The groups may be formed on the basis of subject 
matter knowledge, corresponding, for example, to industry category (in a 
business survey) or age/sex categories (in a social survey).  
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(b)  Limited availability of auxiliary variables for imputation. The 
imputation variable(s) needed for a certain imputation method may not be 
available for the entire sample  s . This may lead to the use of several 
different imputation methods for the same data set and a hierarchy of 
imputation methods, as we will now explain. Suppose that a strongly related 
imputation variable  z  is available, but only for a subset of the sample 
elements. Then one of the stronger methods, such as regression imputation 
or nearest neighbour imputation, can be carried out for the group consisting 
of these elements. If no imputation variable is available for some elements, 
they may have to be collected into an imputation group treated with a 
weaker kind of imputation, such as respondent mean or hot deck. In such a 
hierarchy of imputation methods, the stronger imputation methods are 
applied first, in one or more groups and for as many nonresponding elements 
as possible, and the weaker methods are applied to the remaining groups. 
 
Adding a randomly selected residual 

Multiple regression imputation and its special case ratio imputation are 
deterministic methods in that they give the same imputed value if repeated. 
They can be made stochastic through the addition of a randomly selected 
residual. There may be good reasons for doing this. Then, in the case of 

regression imputation, the imputed value for element  k  is  �z ˆˆ kky ′=  + ek
∗ , 

where  �̂ = ( ) kkr kr kkk yqq zzz ∑∑ −′ 1   as before, and  ek
∗   is a randomly 

selected residual from the set of computed residuals  { }e k rk : ∈ , where  

�z ˆ
kkk ye ′−= . Adding such a residual has the effect of making the 

completed data set more realistic. A completed data set containing 

regression imputed values  �z ˆˆ kky ′=  tends to have less variability than a set 

of truly observed values  yk . Adding a residual will alleviate this problem.  
 
The technique of adding a randomly selected residual has several potential 
uses: It can be done (a) for point estimation only,  (b) for variance estimation 
only, or  (c) for both. The consequence of (a) is to add variance to the 
imputed estimator. Case (b) represents a perhaps more important use of the 
technique. Suppose that the technique is practiced only for variance 
estimation. The resulting advantage for variance estimation is that the 
completed data set tends to contain “the right amount of variation”. A  
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“standard formula” may then be used as part of the variance estimation 
procedure. We return to this issue in Section 7.3. 
 
Remark 7.2.2. Multiple imputation has been proposed as a technique for 
treating nonresponse. As the name suggests, several imputations are made in 
the same survey data set. So far, we have discussed single-value imputation, 
that is, every missing value is replaced by one and only one proxy value. By 
contrast, in multiple imputation, two or more imputations are made for a 
missing value. It leads to several different completed data sets. Suppose that 
three such sets are produced. The  yk -values for respondents are the same in 
all three, but the imputed values (for item nonresponse and/or for unit 
nonresponse) are different in the three sets. This assumes that a random 
imputation technique is used, for example, hot-deck imputation. 
(Deterministic methods such as nearest neighbour and regression imputation 
do not qualify, because they give one and the same value in repeated 
attempts, unless the method is suitably modified.) The multiple imputation 
technique was proposed by Rubin (1978) and is described in considerable 
detail in Rubin (1987). Multiple imputation is intended both for point 
estimation and for variance estimation. One of the principal advantages lies 
in the variance estimation, which becomes very simple, given the existence 
of several completed data sets. However, in national statistical agencies, 
multiple imputation has, so far at least, found little use. One reason may be 
that the method makes heavy demands on data storage space (even though 
only the imputed values differ from one set to the next). In some countries, 
notably the United States, multiple imputation is used in “secondary 
analysis” carried out on survey data by, for example, analysts situated 
outside the national statistical agency. 

� 

7.3. Variance estimation when imputation is used  

7.3.1. Why the “standard variance formula” is misleading when 
imputation is used 

The survey statistician's responsibilities include both  (i) point estimation 
and  (ii) the corresponding variance estimation. The latter task is often more 
demanding than the first, both in terms of computing time and in the 
statistical reasoning required to do it correctly. Variance estimation in the 
presence of imputation is a complex statistical problem. In recent years, 
considerable research has been put into “correct” variance computation 
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when imputation has been used. Different “solutions” have been proposed, 
none of them necessarily optimal. These developments seem to be far from a 
conclusion, and one can expect the next few years to bring new results. The 
recommendations in this section are therefore preliminary. 
 
We noted previously that the usual practice in regard to point estimation is 
to treat the completed data set (7.1.1) as a set of  n  actually observed values 
and, consequently, to compute the standard estimator formula (the full 
response estimator) on these data. When it comes to variance estimation, it 
is not easy to pinpoint a “good” procedure. 
 
By the standard formula for variance calculation we mean the variance 
estimator formula that accompanies the full response estimator. It is correct 
to use this formula for variance estimation and confidence interval 
calculation in the ideal case of 100% response, according to the recipe:   

point estimate ±  1.96 1/2)estimate (variance  

In repeated samples drawn by the given sampling design, this interval will 
cover the parameter value for roughly 95% of all samples. It is called a 
design-based confidence interval, because it refers to repeated samples 
drawn with the given design. 
 
Nonresponse brings additional variance over and above the sampling 
variance. When imputation is used to treat the nonresponse, this is seldom 
recognised in practice. Some users may argue that the variance increase is 
small and can be ignored. This may be true for a modest imputation rate – 
say, 3% – but not for a 30% imputation rate. 
 
At many statistical agencies, the current practice is to treat imputed values as 
observed values for purposes of variance calculation also. That is, the n 
values of the completed data set are inserted into the standard formula for 
variance estimation, in the belief that this will give a sufficiently good 
indication of the variance of the imputed estimator. This approach of “acting 
as if the imputed values were perfect substitutes” leads to incorrect variance 
estimates, for two reasons:  
 
(i)  The standard formula for variance, computed on the completed data set, 
gives a biased estimate of the sampling variance, the bias being usually 
negative; 
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(ii)  No attempt is then made to estimate the additional variance caused by 
nonresponse.  
 
Consequently, the computed confidence intervals will be wrong, on average, 
usually too short. The interval based on the normal score 1.96  will not cover 
the parameter value in roughly  95% of all cases, as is the intent. 
 
The fact that the standard formula gives a misleading indication of the 

variance of the imputed estimator  �YI   is illustrated by the following 
example. 

 
EXAMPLE 7.3.1. “Right amount of variation” in the completed data? 

Consider the sampling design SRS with the sampling fraction  n/N. Suppose 
first that there is no nonresponse and that we estimate the population total  Y  

by  �Y  = N ys , where  ys   is the arithmetic mean of the  n  sample values  

yk . The well-known expression for the sampling variance is  V Yp ( �) = 

N n N SyU
2 21 1( / / )− , where  SyU

2   is the population variance of the  N  values  

yk . An unbiased variance estimator (based on the sample) is  � ( �)V Yp  = 

N n N Sys
2 21 1( / / )− , where  Sys

2

 
 is the variance of the  n  observed values  

yk . Now turn to the situation with nonresponse and imputation (by any 

suitable method). The full response estimator  �Y  = N ys   yields the imputed 

estimator  �YI  = N y s• , where  y s•   is the arithmetic mean of the  n  values  
y k•   of the completed data set. The standard formula for the estimated 

variance, N n N Sys
2 21 1( / / )− , when computed on the completed data set, 

gives the result  N n N S y s
2 21 1( / / )− • , where  Sy s•

2   represents the variance of 

the  n  values  y k•   of the completed data set. What can be said about  Sy s•
2 ? 

It depends on the imputation method whether or not  Sy s•
2   is close to the 

desired value  Sys
2 . The completed data set may not contain the “right 

amount of variation” for this to happen. A case in point is respondent mean 
imputation (this imputation method is not recommended except as a last 
resort!), in which case  �y yk r=   for every  k ∈ o = s - r, and a simple 
analysis shows that computation of the standard formula on the completed 
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data set gives  N
n N

m

n
Syr

2 21 1 1

1
( )−

−
−

, where  m  is the number of 

respondents and  Syr
2 = )1/()( 2 −−∑ myyr rk . This looks “too small” as an 

indicator of the sampling variance; N
n N

S yr
2 21 1
( )−   would be more 

acceptable. If the response mechanism is uniform, then, on average, Syr
2   

equals  Sys
2 , and the standard formula will thus underestimate the sampling 

variance by a factor of roughly  m/n. For example, if the response rate  m/n  
is 70%, the standard formula will underestimate the sampling variance by as 
much as 30%. Note that we still have not made any attempt to estimate the 
nonresponse variance; this requires a separate estimation, as we discuss 
later. 

� 

7.3.2. The framework for evaluating bias and variance 

For a correct assessment of the variance, we need to examine the statistical 

properties (bias, variance, mean squared error) of the imputed estimator  �YI . 
This is done in detail in Appendix A; see also Section 5.2. The total variance 

of  �YI   is given by (5.2.3) with  � �Y YNR I= , that is,  
 
V Y V Vpq I SAM NR( � ) = +          (7.3.1) 

 
where  VSAM = V Yp ( �)   is the sampling variance, discussed in Section 7.3.4, 

and  VNR = )ˆ( sYVE Iqp   is the nonresponse variance, discussed in Section 

7.3.5. Recall that  Ŷ   denotes the full response estimator. 

The variance estimator of  �YI   is given by   

( )� � � �V Y V Vpq I SAM NR= +         (7.3.2) 

In survey practice, it is important to evaluate each of the two components 
individually. The information about the relative size of the nonresponse 
variance may lead to important modifications in the survey design, for 
example, regarding the amount of resources allocated to nonresponse 
prevention and treatment. 
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To illustrate, suppose it is found in a regularly repeated survey that the 
nonresponse variance accounts for 40% of the total variance. If this 
proportion seems high, it may be a signal that more resources should be 
devoted to trying to reduce the nonresponse on the next survey occasion. 

How do we compute the two components of (7.3.2)? This question is 
examined in Sections 7.3.3 to 7.3.6. 

For the sampling variance, we have noted that when the “standard formula” 
is computed on the completed data set, the result is often an incorrect 

indicator of the sampling variance component  V Yp ( �) . This problem is 

examined in Sections 7.3.3 and 7.3.4. 

For the nonresponse variance, most statistical agencies presently lack a 
well-developed practice. We consider methods for estimating the 
nonresponse variance in Sections 7.3.5 and 7.3.6. 
 
The approaches to variance estimation in the presence of imputed values are 
reviewed in Lee, Rancourt and Särndal (2000, 2001). For further detail, the 
reader is referred to these two sources and to the many references given 
there. 
 

7.3.3. The use of standard software for variance calculation 

The total estimated variance of the imputed GREG estimator  �YI   given by 
(7.3.2) is a sum of two components, one for the sampling variance and one 
for the nonresponse variance. In this section and in Section 7.3.4 we 
comment on the sampling variance component. A guiding principle is the 
desire to profit as far as possible from already existing software for variance 
estimation. A number of national statistical agencies now use specially 
designed software to carry out point estimation and variance estimation, for 
example, Statistics Sweden's CLAN97 and Statistics Canada's GES. Such 
software is equipped to handle estimation in the case of 100% response, but 
cannot always be directly applied to situations with survey nonresponse. 
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Now, if the nonresponse is treated by imputation, and if no special 
arrangements are made, these software packages will act as if imputed 
values were as good as truly observed values. They will compute a point 
estimate and a variance estimate from the completed data set, using the 
ready-programmed formulas, which we refer to as “standard variance 
formulas”. 
 
The standard variance formula computed on the completed data set is 
usually an invalid estimate of the sampling variance of the imputed 
estimator. Furthermore, neither CLAN97 nor GES is presently equipped to 
calculate the nonresponse variance component generated by imputation.  
 

7.3.4. Estimating the sampling variance component 

The objective in this section is to carry out a “correct” computation of the 
estimated sampling variance component  SAMV   in (7.3.2).The procedure 

should, on average, yield a correct level for  SAMV   in (7.3.1).  A simple but 

often incorrect approach is to calculate the standard variance estimation 
formula on the completed data set, using the readymade programme in a 
software package such as CLAN97 or GES. For some imputation methods, 
this will indicate the wrong level for the sampling variance. (Consequently, 
it is even more in error as an indicator of the total variance, if no attempt is 
made to account for the nonresponse variance.) 
  
Two approaches to estimating the sampling variance  SAMV   are: 

 
(i)  use only the available observed  y-values  yk   for  k ∈ r,  

(ii)  use the completed data set  y k•   for  k ∈ s, consisting of real 
observations and imputed values. 
 
Here (ii) is more attractive than (i), because the  n - m  imputed values, 
although artificial and non-observed, will often contain important additional 
information, supplementing the information contained in the  m  truly 
observed  y-values  yk , especially when the imputed values are created with 
the aid of a powerful predictor variable  zk . Although the imputed values 
are not perfect substitutes, they are usually better than a total absence of data 
on the  n - m  nonresponding elements.  
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Another important reason for focusing on alternative (ii) is the desire to 
benefit from existing software. As mentioned, CLAN97, GES and similar 
software contain a “standard variance formula” for computing the sampling 
variance calculation of the GREG full response estimator. Considerable 
effort may be saved if we can directly insert data into such a standard 
variance formula and obtain a correct indication of the sampling variance 
component. It depends on the imputation method (or methods, if more than 
one is used in the same survey) whether the standard variance formula will 
yield a correct level when the completed data set  { }sky k ∈• :   is inserted 

into it. For some of the usual imputation rules this is not the case. The 
variability in the completed data set may be insufficient, with 
underestimation as a result. 
 
The literature suggests two directions for correcting this problem. Both use 
the standard variance formula, but in different ways. They are: 
 
(a)  to amend the standard variance formula by adding a suitable correction 
term; 
 
or 
 
(b)  to amend the completed data set (7.1.1) used to produce the point 
estimate  �YI , so that the amended completed data give a “correct” level for 
the sampling variance when inserted into the standard variance formula. 
 
We focus here on alternative (b), because of the desirability of using 
available software. Note that in (b), the amended completed data set is used 
for variance calculation only (not for point estimation). 
 
The exact nature of the amendment depends on the imputation method. The 
following procedures can be applied with some confidence to obtain an 
approximately correct level for the sampling variance when the GREG is 
used as the full response estimator. The recommendations are tentative and 
are likely to be subject to further study in the near future.  
 
(Multiple) regression imputation, including ratio imputation 

For these types of imputation, the completed data set contains too little 
variability for the standard variance formula to correctly reflect the sampling 
variance. Therefore, for every element  rsok −=∈ , carry out the following 
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procedure. To the imputed value  �yk   given by (7.2.4), add a regression 

residual, randomly selected from the computed set of residuals  { }rkek ∈;  , 

where  �z ˆ
kkk ye ′−= . Let the randomly chosen residual for element  k  be  

*
ke . The amended completed data set is thus made up of the values  yk   for  

k ∈ r  and  �yk  + *
ke   for  k ∈ o. Then compute the standard variance formula 

on this amended data set composed of  n  values.  
 

Nearest neighbour imputation 

The situation for nearest neighbour imputation is the opposite, compared to 
regression imputation, in that the completed data set tends to contain too 
much variability. No amendment is needed. Insertion into the standard 
variance formula will instead overestimate the sampling variance somewhat. 
The overestimation is usually modest, unless the nonresponse rate is high. 
The standard variance formula will thus give a variance estimate that is 
somewhat on the conservative side.  
 

7.3.5. Approaches to estimating the nonresponse variance 

The objective is to construct a (computable) measure, NRV̂ , of the 

nonresponse variance component  VNR = )ˆ( sYVE Iqp   of the total variance  

V Ypq I( � )   given by (7.3.1). The formula for  NRV̂   will depend on the 

imputation method used. This is easy to understand, since imputation 
methods are more or less accurate. The size of the nonresponse set, n - m, 
will influence the size of  NRV̂ : the more we impute, the greater, normally, 

the nonresponse variance. 
 
The dependence of  NRV̂   on the imputation method is an inconvenience in 

that a new formula must be worked out for every imputation method. The 
formula also depends on the sampling design in use. These inconveniences 
are particularly pronounced when more than one imputation method is used 
in the same survey. 
 
Two principal methods exist for constructing the measure  NRV̂   of the 

nonresponse variance: 
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(i)  the two-phase approach; 
(ii)  the model-assisted approach. 
 
The two-phase approach relies on the two distributions that we associate 
with “sampling followed by nonresponse”, namely, the (known) sampling 
design  p s( ) , and the (unknown) response mechanism  q r s( ) , as discussed 

in Section 5.2 and Section 6.1. 
 
The model-assisted approach, in turn, also relies on two distributions: the 
sampling design distribution  p s( ) , and what is known as the imputation 
model distribution. To explain the latter, we note that when the statistician 
imputes by a specified method, he/she refers, implicitly or explicitly, to a 
hypothetical relationship between the study variable  y  and a vector of 
predictor variables  z. We refer to this relationship as the imputation model. 
It underlies the construction of the imputed values  �yk , and it plays a crucial 
role in deriving the nonresponse variance component in the model-assisted 
approach. On the other hand, the assumptions regarding the response 
mechanism  q r s( )   are minimal in the model-assisted approach. 

 
The underlying imputation model  ξ  is particularly evident in the case of 
regression imputation, as defined in Section 7.2. The simple regression 
model  kkk zy ��� ++=   lies behind the univariate regression imputation  

kk zy �̂�̂ˆ += . Ratio imputation corresponds to the special case of this model 

obtained for  �  = 0. The multiple regression model  kkky �+′= �z   lies 

behind the multiple regression imputation  �z ˆˆ kky ′= . In these models, k�   is 

a random error term, about which assumptions are made: E kξ ε( ) = 0  for 

every  k  and  E kξ ε( )2 = σ2 f k( )z   , where  f ( )⋅   is a specified function. The 

unknown model parameter  σ 2   must be estimated, and this is done by 
seeing how well the imputation method succeeds in predicting the study 
variable values  yk   for the responding elements. For these elements, yk   is 
observed, and by comparing observed and imputed values, we can measure 
how prone the imputation method is to correctly predict the study variable. 
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Nearest neighbour imputation, defined and discussed in Section 7.2, is also 
motivated by an underlying model, though this may be less apparent because 
there is no explicit model fitting, as in regression imputation. Nevertheless, 
when the statistician argues, as in nearest neighbour imputation, that the 
donor element  )(kl   has a  y-value “close” to the missing value  yk , he is 
clearly thinking in terms of a relationship between  y  and the imputation 
variable  z  used to identify the donor such that if  )(klz   is close to  zk , then  

)(kly   should also be close to the missing value  yk . When the imputation 

vector is multivariate, an appropriate model for nearest neighbour 
imputation is  kkky ε+′= �z . In the univariate case, either  

y zk k k= + +α β ε   or  y zk k k= +β ε   may be appropriate. 
 

7.3.6. Expressions for the nonresponse variance estimate in some special 
cases 

Here we consider one example to illustrate the model-assisted derivation of 
the estimated nonresponse variance, NRV̂ . For other cases, the reader can 

develop the appropriate formula to suit the particular conditions of his own 
survey. The formula  NRV̂   will depend on the following factors:  (i) the 

survey specifications (the sampling design, the full response estimator that 
underlies the imputed estimator),  (ii) the imputation method in use, and  
(iii) the assumed imputation model. 
 
We consider the following survey conditions:  Sampling design:  SRS with  
n  elements drawn from  N;  Estimator: the imputed GREG estimator  

IŶ = kks k ygd •∑   given by (7.2.1), with the weights  kd = nN /   and where  

gk   is given by (4.3.4);  Imputation model: y zk k k= +β ε   with  E kξ ε( ) = 0; 

E kξ ε( )2 = σ2zk ; 0)( =lkE εεξ   for all  k ≠ l, where the subscript  ξ  denotes 

expectation under the imputation model. Note that the imputed GREG 
estimator uses an auxiliary vector, x, which may or may not include the 
variable  z  used in imputation. Under these conditions, we examine:  (i) 
Ratio imputation and  (ii) Nearest neighbour imputation. 
 

(i) Ratio imputation with the imputed value  �yk = �̂kz   for  k o∈ , where   

∑∑= r kr k zy /�̂ : The model-assisted approach, based on the imputation 

model, leads to 
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where  �σ 2   is a model unbiased estimator of the imputation model 
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  where  zrcv   equals the standard 

deviation of z in  r, divided by the mean of  z  in  r, and  �̂kkk zye −= . A 

special case is the HT-estimator, which becomes  N ys   under SRS. Its 

estimated nonresponse variance, obtained by setting  1=kg   in (7.3.3), is 

given by 
 
�VNR = N m n z z zo s r

2 21 1( / / )( / ) �− σ  
 
where  oz , sz   and  rz   are means over the indicated sets, and where  �σ 2   is 

given by (7.3.4). 
 
(ii) Nearest neighbour imputation: The imputed value is  )(ˆ klk yy = , where  

)(kl   is the donor element such that the minimum of the distance  kl zz − , 

over the potential donors  l ∈  r, occurs for  )(kll = . The model assisted 
approach produces the following estimator of the nonresponse variance 
component:  
 

NRV̂  = 222 ˆ])([ σ∑∑ + r llo kkk zSzgd      (7.3.5) 

 
where  ∑=

lo kkl gdS   with  { }donor asusesand: lkokko ∈=
"

  and  �σ 2   

is given by (7.3.4). It is seen from this expression that the multiple 
utilisation of the same donor has a tendency to increase the nonresponse 
variance. One can show that the nonresponse variance is about twice as large 
for nearest neighbour imputation as for ratio imputation. 
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Remark 7.3.1.  As Remark 7.2.1 points out, when the GREG-conformable 
multiple regression imputation is used, IŶ   is identical to  WŶ   and the 

variance estimator  ( )� �V YW , given by (6.4.1), can be used.     

  
� 

 

7.4. When is imputation allowed?  

Imputation may not always be possible because of legal restrictions. In some 
countries imputation is prohibited by law, at least for certain types of 
population elements. The present situation in Sweden, as in all Member 
States of the European Union, is as follows. In a data file on individuals, the 
insertion of any value that is not a “true observation” is disallowed. 
However, if the Personal Identity Number (see Example 2.2.1), or other 
unique person identifier, is suppressed in the file, then imputation is 
permitted.  
 
For business enterprises, however, the legal restriction applies only to those 
enterprises that are identified by the Personal Identity Number. For most 
business enterprises in a typical business register, the identifier is not tied to 
the Personal Identity Number. Consequently, for such elements imputation 
is allowed and used in many Swedish business surveys. 
 
The law relates to “personal data”, a term defined in the Directive 95/46/EC 
issued in 1995 by the European Community:  “… ‘personal data’ shall mean 
any information relating to an identified or identifiable natural person (‘data 
subject’); an identifiable person is one who can be identified, directly or 
indirectly, in particular by reference to an identification number or to one or 
more factors specific to his physical, physiological, mental, economic, 
cultural or social identity.” 
 
The same Directive states that personal data must be: “...(d) accurate and, 
where necessary, kept up to date; every reasonable step must be taken to 
ensure that data which are inaccurate or incomplete, having regard to the 
purposes for which they were collected or for which they are further 
processed, are erased or rectified.”  
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The Swedish Data Inspection Board (1974), abbreviated DI for 
“Datainspektionen”, declares that imputation is contrary to the law since 
imputed values are known at the outset to be proxies rather than true values. 
DI is also of the opinion that imputation impinges on personal integrity; the 
more sensitive the variable, the more integrity is affected. 
 
In this CBM we make a distinction between imputed value and derived 
value. Following the wording of the law, we mean by imputed value one that 
is inserted in a data file, is not observed, and is therefore unlikely to be exact 
or “true”. A derived value, on the other hand, may also be inserted, but it is a 
true value. An example arises when the true sum of the values of a set of 
variables is available, and when individual, true variable values are available 
for all but one variable, whose true value is obtained by subtraction and then 
inserted into the data file. This situation may occur in economic statistics, 
with data derived from financial statements.  
 
Sometimes, derived values are determined for every element in a realised 
sample, and the result is referred to as a derived variable. There are two 
types of derived variable:  (i) a variable constructed by the statistician and 
such that there is no need to explain its meaning to users outside the agency, 
and  (ii) other derived variables. To the first type belong, for example, the 
design weight, a calibrated weight, a constructed index. All of these arise 
from a specified formula whose value is computed for each sample element; 
hence they are derived variables. The second type includes, for example, a 
taxable income derived according to a formula that produces a value of 
taxable income, as a function of other variables with known values. 
 
Statistics Sweden's interpretation of the law is that the possibility of 
imputing for identified individuals still exists, namely, if this is done in such 
a way that no imputed values appear on the final output data file and if 
imputation and tabulation occur in the same production step (within a few 
seconds and using the same software). Sometimes new tabulations from the 
file may be required later, and the need may then arise for imputations for 
the missing values in the file. In order to reproduce the original imputed 
values we must then assume that a deterministic imputation technique is 
used.  
 
In most surveys, several preliminary versions of the observation data file are 
created in the production process. All these files are scrapped when the final 
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output file is produced. The interpretation of Statistics Sweden is that the 
law allows the use of imputed values in these preliminary data files. 
 
It must be emphasised that, in any case, imputation is not carried out for the 
purpose of infringing the rights of whatever elements are involved. 
Imputation is a tool used by the statistical agency to enhance the quality of 
the estimates, which is in the interest of the nation and its citizens. 
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8. Comparing reweighting and imputation: Which 
is preferable? 

8.1. Introduction 

In earlier chapters we presented two approaches to the treatment of 
nonresponse, reweighting and imputation. So far little has been said about 
which approach is preferable. Guidelines for choosing between them are 
proposed in this section. 
 
Both practical and statistical considerations influence the choice. Examples 
of statistical considerations are: which of the two approaches is better for 
reducing the nonresponse bias? Which is better for reducing the variance? 
Variance estimates are usually also required in the survey, so a practical 
consideration is whether computer software is available for the computation 
of variance estimates. Another practical matter is that legal restrictions may 
have a bearing on the choice, as discussed in Section 7.4.  
 
The current situation at Statistics Sweden is that imputation is mainly 
limited to business surveys. In some of these surveys, imputation is limited 
to item nonresponse (ITIMP-approach), in others, imputation is used both 
for unit nonresponse and item nonresponse (UNIMP-approach). The 
prevailing practice for imputation is that of a hierarchy of methods, as 
discussed under the heading of Imputation Groups in Section 7.2.3. 
 
Reweighting has long been the dominant approach in Statistics Sweden's 
surveys on individuals and households. One reason for this is that 
imputation is not allowed for data on individuals, as discussed in Section 
7.4. Consequently, if imputation were to be freely used for a data set on 
individuals, then the person identifier would first have to be suppressed, 
which may severely reduce the usefulness and quality of the resulting 
completed data set. 
 
Within each of the two main approaches, reweighting and imputation, there 
is considerable variety of choice. Thus, even after a choice between 
reweighting and imputation has been made, the question remains of how to 
choose within the set of available alternatives. In reweighting, the question 



8. Comparing reweighting and imputation: Which is preferable? 

112 

arises as to which auxiliary variable(s) should be chosen for the calibration. 
In imputation, the question is which variables should be used as imputation 
variables, and, secondly, which of the several available imputation methods 
should be used. 
 

8.2. Practical considerations 

The recommended approach for Statistics Sweden's surveys, in particular for 
surveys on individuals and households, continues to be reweighting. A 
recent development is that reweighting can now be carried out in a 
standardised fashion through the calibration technique described in Chapter 
6. Another strong reason for reweighting is that calibration is easily carried 
out using Statistics Sweden's software CLAN97. This computes the 
calibrated point estimate for a population total or for the total of any 
specified domain. It also permits the estimation of any parameter that can be 
expressed as a rational function of such totals. The corresponding variance 
estimates are also computable with CLAN97. This software can handle the 
majority of the sampling designs in current use at Statistics Sweden. A 
significant portion of these sampling designs are variations of STSRS (see 
Section 2.1). It is true that from a more international perspective, this range 
of designs may appear limited.  
 
A prerequisite for a “good” calibration estimator is the availability of 
powerful auxiliary variables. In some surveys at least, there may be a good 
supply, even an abundance, of auxiliary variables from which to choose. 
Some guidelines for this choice are given in Chapter 10, where the main 
objective is to reduce as far as possible the nonresponse bias, as given by the 
general expression (10.2.1). 
 
At Statistics Sweden the software support for imputation is less developed 
than that for reweighting. In many cases, the user will have to construct his 
own program for the computation of imputed values. However, this task is 
often not very demanding. But the computation of a variance estimate for an 
imputed estimator is not a trivial matter, as Section 7.3.6 indicated. The 
formulas depend on the imputation method(s) in use in the survey. Explicit 
formulas for such variance estimates were given in Section 7.3.6 for a few 
cases only. This means that, as a preliminary step, the user will often be 
required to perform the mathematical derivation of the appropriate formula. 
Furthermore, the variance estimation becomes highly complex when several 
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statistical imputation methods are used in the same survey, perhaps 
complemented with expert judgment imputation as well, for instance, for 
large elements.  
 
It should be noted that variance estimation for imputed estimators starts 
from the notion that a set of elements are in some respect similar. For 
example, if elements in a specified group are considered similar, the 
imputation for nonresponding elements in this group can be justified on the 
assumption that these nonrespondents are “typical members” of the group in 
question. The similarity pattern, expressed for example as a linear regression 
through the origin, is estimated from a perhaps considerable number of 
responding elements in the group. The situation is very different when one 
single element, say a very large element, is imputed by expert judgment. 
Then there is no reference group of “similar elements”, and therefore no 
basis for variance estimation. An “easy alternative” is to treat some or all 
imputed values as “true values”, or sufficiently close to true values, but as 
Section 7.3.1 warned, this may lead to a considerable underestimation of the 
variance. 
 
The difficulty with variance estimation disappears in one notable case, 
namely, when GREG-conformable multiple regression imputation is used. 
The imputed GREG estimator under this imputation method is, as we noted 
in Remark 7.2.1, identical to the calibration estimator based on similar 
conditions. Thus the variance estimation procedure for the latter estimator 
applies; it is simple and is given in Section 6.4. The identity in question is, 
however, limited to the estimate of the entire population total. For the 
estimation of the total for a domain, the problem persists; no easy variance 
estimator is available. 
 
Our discussion of variance estimation under imputation was limited to one 
illustration of the mathematical technique leading to the variance estimator. 
The state of the art in regard to variance estimation for imputed estimators 
is, at this point in time, rather fragmentary. We recommend using the sum of 
the two terms  �VSAM   and  �VNR   as given in (7.3.2). The expressions for these 
two components would have to be derived by the user for each particular 
imputation method.  
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8.3. Statistical considerations 

To reduce the bias of the estimates as far as possible is the principal 
objective of nonresponse treatment methods. Compared to this, the objective 
of realising a small variance comes second only. The basis of this reasoning 
is the Mean Squared Error. When there is nonresponse, the Mean Squared 
Error is, at least for large samples, usually dominated by the squared bias 
term, and the variance term is often small by comparison. This holds for 
both reweighting and imputation.  
 
In the course of writing this CBM, we carried out some simulations in order 
to compare reweighting (using the calibration approach) with imputation 
(using several alternative imputation methods). The simulations involved a 
single auxiliary variable, x, which was used both for calibration and for 
imputation. We drew repeated SRS samples of size  200=n   from a 
population of size  1100=N . Here we present only a brief summary of the 
findings. 
 
(i)  In estimating of the total for the entire population, calibration and 
deterministic imputation (see Section 7.1.1) gave very similar results for 
both the bias and the variance. The squared bias was considerably greater 
than the variance. The nearest neighbour imputation estimator had a larger 
variance compared both to other imputation methods and to the calibration 
estimator. This was expected. 
 
(ii)  In estimating the total for a domain, a clear contrast emerges between 
calibration and imputation. In most cases, the nonresponse bias is smaller 
for imputation than for calibration. The variance is also usually smaller with 
the imputation techniques, especially for the smaller domains. Therefore, in 
estimation for domains, imputation appears to have clear advantages over 
calibration, as far as the Mean Squared Error is concerned. 
 
(iii)  Among the imputation techniques compared, the nearest neighbour 
method appears to be the one that yields the smallest bias. 
 
(iv)  Grouping is an efficient means of reducing the nonresponse bias. Also, 
it is efficient to include an intercept (a constant “1”) in the definition of the 
imputation vector. In other words, (simple) regression imputation is 
preferable to ratio imputation. 
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In practice, there is often more than one  x-variable available for use as 
auxiliary variable(s) for calibration or imputation. Choosing the best one(s) 
then becomes a question for both calibration and imputation. Some 
recommendations for this choice are given in the case of calibration in 
Chapter 10. 
 
A disadvantage attaching to some imputation methods is that they may 
distort the distribution of a study variable or the relationship between two or 
more study variables. When the procedure is to impute by the overall 
respondent mean, it is strikingly obvious that the resulting completed data 
set will have an “unnatural” distribution, since a perhaps considerable 
number of elements will be assigned one and the same value, namely, the 
respondent mean. This disadvantage is somewhat reduced when imputation 
is instead by the respondent mean within groups, or by multiple regression 
imputation. However, even a multiple regression imputation based on 
several x-variables tends to yield an completed data set with unnaturally low 
variability, compared to a data set with 100% response. Of the methods that 
we have discussed, nearest neighbour imputation seems to be the least 
susceptible to this drawback. That is, it comes closest to rendering a natural 
distribution and a natural variability in the completed data set. 
 
The relationships between variables are also likely to be more or less 
perturbed by imputation. As a result, a regression analysis or other type of 
analysis can give misleading results, compared to the same analysis carried 
out for the ideal case with 100% response on all variables involved. Again, 
nearest neighbour imputation is likely to be the method offering the best 
protection against this disadvantage. 
 
Finally, it should be pointed out that, whatever the method used, the data set 
after imputation should be subjected to the usual checks for internal 
consistency. That is, all imputed values should be subjected to the editing 
checks normally carried out for the survey in question. 
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9. The treatment of item nonresponse 

Most surveys are affected by both item nonresponse and unit nonresponse. 
In the preceding chapters we have examined the calibration approach and 
the imputation approach as two possible ways of treating unit nonresponse. 
The question now arises how the item nonresponse should be dealt with. We 
discuss several scenarios. All of these are motivated by the desire to create a 
rectangular data matrix. A unique set of weights can then be applied to all 
study variables. 
 
A.  Reweighting (by the calibration approach) as described in Chapter 6 is 
used following a treatment of item nonresponse by one of the following 
methods: 
 
A1.  Values missing because of item nonresponse are imputed, using one or 
more of the methods reviewed in Chapter 7. This becomes the ITIMP-
approach, in the terminology of  Section 3.1. The result is a rectangular data 
matrix, to which we can apply the calibration approach for reweighting. 
Every  y-variable in the survey will have values recorded (by observation or 
by imputation) for every element k in the response set  r. The difference 
between the imputed value and the true value is here regarded as a 
measurement error. The extent of the item nonresponse is assumed to be 
relatively small.  
 
A2.  Information is discarded in such a way that all study variable values 
observed for item nonresponse elements are ignored (sometimes called 
“amputation”). No imputation occurs. In this case, too, the result is a 
rectangular data set. This voluntary sacrifice of data can in some cases cause 
a substantial loss of information. The technique cannot be recommended 
unless the item nonresponse set is small. As noted in Section 8.3, imputation 
may distort the distribution of a study variable or the relationship between 
two or more study variables. This will cause particular problems when a 
regression or some other model is fitted. Amputation may then be an 
alternative to imputation.  
 
A3.  For a categorical study variable a special “data missing” (DM) category 
is created, in addition to the “real” categories. The DM category is then 
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treated as any “real” category. This procedure will tend to underestimate the 
population frequencies for the “real” categories. Usually, in surveys at 
Statistics Sweden the parameters of interest are proportions rather than 
frequencies. The usual procedure is then to treat the estimation of the 
proportion of elements in a given category as a procedure for estimating a 
domain mean. The item nonresponse elements (that is, the set of elements 
assigned to the DM category) are regarded as not belonging to the domain. 
The estimated proportion will have the structure of “weighted estimate of 
the number of responding elements belonging to a given 'real' category” 
divided by “weighted estimate of the total number of responding elements”.  
 
B. Imputation is used for the item nonresponse as well as for the unit 
nonresponse. One or more of the methods in Chapter 7 can be applied. This 
creates a completed data matrix with  n  completed records, where  n  is the 
size of the whole sample  s.  
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10. Selecting the most relevant auxiliary 
information 

10.1. Discussion 

In many surveys, extensive auxiliary information may be readily available 
from registers and other reliable sources. For example, Statistics Sweden's 
registers on individuals contain variables such as address, sex, age, income, 
occupation and education. Additional information may come from matching 
with other registers. Altogether, these variables provide a valuable source of 
information. The question then arises as to how one should go about 
selecting the most relevant part of the total available information, since all 
of it may not necessarily be used. 
 
Auxiliary information can be used both at the design stage (in constructing 
the sampling design) and at the estimation stage (in constructing the 
estimators). This CBM is about estimation, so we concentrate on the second 
type of usage.  
 
Remark 10.1.1. All available register variables, except for sensitive 
variables, may be used in the nonresponse analysis, in the computation of 
weights and in the construction of imputed values. Sensitive variables are 
defined by Swedish law as those which relate to the following conditions:  
(i) race or ethnic extraction;  (ii) political orientation;  (iii) religious or 
philosophical orientation;  (iv) trade union membership;  (v) health and 
sexual orientation. Sensitive variables are relatively rare in registers, so no 
serious restrictions arise for the applicability of the methods advocated in 
this CBM. In the following we use the term “available auxiliary variable” to 
mean a variable that is both available and allowable for use under Swedish 
law. 

� 
 
Chapter 6 has shown that the calibration approach to reweighting is highly 
flexible in its use of auxiliary information. The other approach, imputation, 
is in some ways even more flexible in that it allows more than one 
imputation method to be used in the same survey; see Section 7.2.3. 
However, even if technically feasible, the use of all available auxiliary 
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information is not necessarily the preferred solution. Professional judgment 
must be exercised in selecting the auxiliary information that will finally be 
used. 
 
The MSE measures the accuracy of an estimate. It consists of the sum of the 
variance and the squared nonresponse bias. The latter term is likely to 
dominate the  MSE, at least when the sample size is fairly large. A sizeable 
nonresponse bias has several negative consequences. Neither a good 
variance estimate nor a valid confidence interval can be derived. These are 
serious drawbacks, because the survey results lose some of their value if 
they cannot be accompanied by valid confidence statements.  
 
The overriding objective is therefore to reduce the nonresponse bias as far as 
possible. One should try to identify variables that meet this objective. 
Usually, however, it is impossible to assess the nonresponse bias, and 
subjective judgments become necessary. Some approaches are suggested in 
Section 10.2. 
 
Reweighting sometimes implies a trade-off between nonresponse bias and 
variance:  for the reduction of nonresponse bias, it is desirable to use as 
many auxiliary variables as possible, yet this course of action is not 
necessarily the best for realising the smallest possible variance. 
 
There is ample evidence in the literature that the choice of auxiliary 
information has a considerable impact on both the sampling variance and the 
nonresponse bias. A literature search on the choice of auxiliary information 
reveals two different types of articles: on the one hand, those that emphasise 
sampling error reduction, and on the other hand, those that emphasise 
nonresponse bias reduction. Relatively few articles address both aspects 
jointly. 
 
There is a need for guidelines and methods for selecting “the best” from a 
larger set of potential auxiliary information. We discuss such guidelines in 
Section 10.2. Section 10.3 offers a review of the literature on the importance 
of different kinds of auxiliary information. 
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10.2. Guidelines  

10.2.1. Introduction 

Example 6.3.1 showed that in the unlikely situation where a perfect linear 
relationship exists between the study variable and the auxiliary vector, then 

the calibration estimator �YW   provides an exact estimate of  Y. Thus we can 
expect that if powerful, although less than perfect, auxiliary information can 
be identified and used, then both the sampling error and the nonresponse 
bias will be small. More specifically, one should select an auxiliary vector 
that satisfies, as far as possible, one or both of the following principles: 
 
(i) the auxiliary vector explains the variation of the response probabilities 
 
(ii) the auxiliary vector explains the variation of the main study variables.  
 
A third principle to take into account is that  
 
(iii) the auxiliary vector should identify the most important domains. 
 
When principle (i) is fulfilled the nonresponse bias is reduced in the 
estimates for all study variables. However, if only principle (ii) is fulfilled 
the nonresponse bias is reduced only in the estimates for the main study 
variables. Then the variance of these estimates will also be reduced. 
Example 4.5.3 showed that the residuals are likely to be considerably 
smaller if the auxiliary vector can be formulated to identify the principal 
domains. This is the motivation behind (iii). In the following we examine 
how the first two principles help in reducing the nonresponse bias of the 

calibration estimator  �YW  .  
 
Appendix C gives the following general expression for the nonresponse 
bias, valid for large response sets: 
 

)ˆ( Wpq YB kU k Eθθ∑ −−≈ )1(        (10.2.1) 

 
where  θθ Bkkk yE x′−=   and  ( ) ∑∑ −′= U kkkkU kkkk ycc xxx θθθ

1B .  
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It is shown in Appendix C, Proposition C.2, that the nonresponse bias given 
by (10.2.1) will be zero if a certain relation exists between the response 
probability  kθ   and the auxiliary vector  kx , namely, 

 
θk k kc− = + ′1 1 λ x    for k U∈        (10.2.2) 
 
where  λ   is a column vector independent of  k. (If (10.2.2) holds, the right 

hand side of (10.2.1) is zero, and the bias  )ˆ( Wpq YB   is thus approximately 

zero. For simplicity, we will use the phrases “the bias is zero” and “the bias 
is eliminated”, although they may hold only in an approximate sense.) 
 
Formula (10.2.1) simplifies when  kc   are chosen to be of the form  

kkc x�′= /1 .  The expression is then 

 

EU kWpq YB θB∑ ′≈ x)ˆ(         (10.2.3) 

 
where 
 

( ) ∑∑ −′= U kkkkU kkkkE Ecc xxx θθθ
1B      (10.2.4) 

 

and  ( ) ∑∑ −′′−= U kkkU kkkkkk yccyE xxxx 1  

 

It follows from (10.2.1) and (10.2.3) that  B Ypq W( � ) ≈ 0   when the ideal 

conditions of Example 6.3.1 hold, because then  0=kEθ   for all  k  and  

0=kE   for all  k. It can also be shown that the variance of  �YW   is a function 

of the residuals  Ek   and that for many sampling designs, a reduction of the 
residuals will reduce the variance; see Section 4.4. Consequently, an 
auxiliary vector that explains the variation of the study variable is effective 
in reducing the MSE.  
 

10.2.2. Analysis of the nonresponse bias for some well-known estimators 

In Section 6.6 we discussed several special cases of the general calibration 
estimator, corresponding to different formulations of the auxiliary vector  

kx   and the factor  kc . Here we revisit these examples with the purpose of 
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showing how the theoretical results (10.2.1) to (10.2.3) can guide the 
selection of relevant auxiliary information. For simplicity, these examples 
assume the SRS design and a single quantitative variable  kx . 

 
Six well-known estimators were discussed in Section 6.6: the expansion 
estimator (EXP), the poststratified estimator (PST), the weighting class 
estimator (WCE), the ratio estimator (RA), the regression estimator (REG), 
the separate ratio estimator (SEPRA) and the separate regression estimator 
(SEPREG). They are obtained from the general calibration estimator (6.3.2) 
under the specifications of  kx   and  kc   given in Table 10.2.1.  

 
Table 10.2.1. The specifications of the auxiliary vector  kx   and the factor  

kc   leading to well-known estimators. The notation is explained in Section 

6.6. 
 
Estimator Auxiliary vector  kx  Factor  kc  

EXP 1    1 
PST and WCE ′),...,,...,( 1 Pkpkk γγγ  1 

RA xk  1−
kx  

REG ),1( ′kx  1 

SEPRA ′),...,,...,( 1 Pkkpkkkk xxx γγγ  1−
kx  

SEPREG ′),...,,...,,,...,,...,( 11 PkkpkkkkPkpkk xxx γγγγγγ  1 

 
Let us examine how well these estimators satisfy the first two principles 
given in Section 10.2.1. We start with the first principle, that is,  (i) the 
auxiliary vector should, as far as possible, explain the variation of the 
response probabilities. For each of the six cases in Table 10.2.1, we insert 
the specifications of  kx   and  kc   into (10.2.2) and we obtain the results in 

Table 10.2.2.  
 
The thought process is then as follows: assume that we know the value of  

kθ   for every  k, and that we examine the set of  N  points  

{ }Nkukk ,...,1:),( 1 =−θ , where  kkk cu x�′+= 1 , in order to see how closely  
1−

kθ   agrees with  ku . (In practice the  kθ   are unknown, so the procedure is 

purely hypothetical.) If the relationship is perfect, so that  ku   equals  1−
kθ   
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for every  k, then the nonresponse bias is totally eliminated. This perfect 
relationship is stated in the second column of Table 10.2.2, and is further 
described in the third column.  
 
Table 10.2.2. The relationship between  1−

kθ   and  ku   needed to eliminate 

the nonresponse bias for six well-known estimators. a, pa , b, pb  denote 

constants. 
 
Estimator Form of the  1−

kθ   needed 

to eliminate bias 

Description of the  1−
kθ   

needed to eliminate bias 
EXP 1−

kθ = a   for all  k U∈  constant throughout 

PST and WCE 1−
kθ = pa    for all  pUk ∈  constant within groups 

RA 1−
kθ = a   for all  k U∈  constant throughout 

REG 1−
kθ = kxba +    linear in  kx  

SEPRA 1−
kθ = pa    for all  pUk ∈  constant within groups 

SEPREG 1−
kθ = kpp xba +  linear in  kx   within groups 

 
We can now ask: which of the six estimators in Table 10.2.2 is likely to 
succeed best in coming close to a zero nonresponse bias? The table shows 
that the nonresponse bias for the EXP and the RA estimator is eliminated if 
the response probabilities are constant throughout the whole population. 
This is highly unlikely to happen. Many studies have shown that the 
response probability varies with observable factors such as age, sex and 
others. The situation is much more favourable when grouping is involved, as 
for the PST, WCE and SEPRA estimators. The response probabilities need 
then “only” be constant for all elements within a group.   
 
In Statistics Sweden's surveys, the auxiliary variables are almost always 
derived from registers that comprise the entire target population. Thus, it is 
realistic to assume that kx  is a known value for all  Uk ∈ . Consequently, 

we can calculate both the auxiliary population total  ∑U kx , required for the 

RA estimator, and the population count  N . The REG estimator requires 
knowledge of both  ∑U kx   and  N . Table 10.2.2 shows that the REG 

estimator has a near-zero nonresponse bias if  ≈−1
kθ kxba +   for some 
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constants  a  and  b. This condition is more likely to hold than  ≈−1
kθ a, 

which is the condition needed for the RA estimator (and for the EXP 
estimator) to have a near-zero bias. This favours use of the REG estimator 
rather than the RA estimator. 
 
Finally, the relation  ≈−1

kθ kpp xba +   has an even stronger potential for 

holding true, because each of the  p  groups may then have its own linear 
relationship between  1−

kθ   and  kx . Therefore, of the six estimators 

examined, the SEPREG estimator has the best potential to realise the 
objective of a zero nonresponse bias.  
 
The six examples of calibration estimators in Tables 10.2.1 and 10.2.2 
illustrate the following important principle: the more we succeed in 
incorporating important auxiliary information into the auxiliary vector, the 
better are the chances that the nonreponse bias will be reduced to near-zero 
levels. In practice, we are of course not limited to the six cases in those 
tables. The auxiliary information is more extensive in many surveys.  
 
Remark 10.2.1. A quantitative variable  x  is sometimes used to establish 
the grouping of the population (or of the sample) that underlies the 
estimators PST, WCE, SEPRA and SEPREG. In a business survey, x  may 
measure a size-related concept such as “number of employees”. The known 
auxiliary variable values  kx , k = 1, …, N, can then be used to create size 

groups, for example, small, medium, or large elements. 
� 

We turn to the second principle, that is,  (ii) the auxiliary vector should, as 
far as possible, explain the variation of the most important study variables.  
 
Example 6.3.1 has shown that if the perfect linear relationship  

�x kky ′=            (10.2.5) 

 
holds for all  k U∈ , then  �Y YW = . That is, �YW   gives a “perfect estimate” of 

the target parameter  Y  if  (10.2.5) holds. All population residuals  kE   in 

(10.2.3)  are then zero, and so is the nonresponse bias. Let us therefore take 
(10.2.5) as a starting point for analysing whether principle (ii) is likely to be 
satisfied for the six estimators in Table 10.2.1.  
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The thought process is now: assume that we could examine the  N  points  
{ }Nkyy 0

kk ,...,1:),( = , where  �x kky ′=0 . If the relationship is perfect, so 

that  0
ky   equals  ky   for every  k, then the nonresponse bias is totally 

eliminated. This perfect relationship is stated in the second column of Table 
10.2.3 and further explained in the third column. 
 
Table 10.2.3. The linear relationship between  ky   and the auxiliary vector 

that eliminates the nonresponse bias for six well-known estimators. � , p� , 

� , p�  denote constants. 

 
Estimator Form of the  ky   needed 

to eliminate bias 

Description of the  ky   

needed to eliminate bias 
EXP ky =�    for all  k U∈  constant throughout 

PST and WCE ky = p�    for all  pUk ∈  constant within groups 

RA ky = kx�    for all  k U∈  linear in  kx   through the 

origin  
REG ky = kx�� +    linear in  kx  

SEPRA ky = kp x�    for all  

pUk ∈  

linear in  kx   through the 

origin within groups 

SEPREG ky = kpp x�� +    for all  

pUk ∈  

linear in  kx   within groups 

 
We can now ask: which of the six estimators in Table 10.2.3 is most likely 
to succeed best in yielding small differences  0

kk yy −   for all  k, and thereby 

a small bias?  Table 10.2.3 states that the nonresponse bias for the EXP 
estimator will be small if all population  y-values are essentially identical. 
This is a far-fetched possibility. The form  =ky p�   for the  PST and WCE 

estimators stands a somewhat better chance to approximate the truth. It 
implies that we should attempt to identify groups  pU , Pp ,...,1= ,  which 

are as far as possible homogeneous with respect to the  y-variable, a 
motivation similar to the one that lies behind the construction of efficient 
strata for a stratified sampling design. The RA estimator is seen to be in a 
better position than the EXP estimator to realise small residuals, and even 
better placed is the REG estimator, since the latter also “allows” an 
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intercept. Grouping is also involved for the SEPRA and SEPREG 
estimators, and of the six possibilities in the table, the latter shows the best 
promise of achieving small residuals. In the interest of further reducing the 
nonresponse bias, we should try to construct  kx -vectors that give even 

better chances of small residuals than the six cases in Table 10.2.3. 
 
We have now discussed principles (i) and (ii) in the light of expressions 
(10.2.2) and (10.2.5). However, it should be noted that the nonresponse bias 
can be small for other reasons as well. For example, if there are  P  groups, 
then the nonresponse bias is a sum of  P  terms, and it can happen, 
fortuitously, that these terms are of different signs with the effect of 
essentially cancelling each other; see Section 10.2.3. Also, for the REG 
estimator, an analysis shows that the nonresponse bias is small if the  kE   

are nearly uncorrelated with the  θk   and with the quantities  θk kx . 
However, it appears difficult to suggest a concrete action that will meet both 
of these conditions. 
 
Grouping is a particularly promising avenue for attempts to reduce the 
nonresponse bias. In the next section we further analyse two of the 
estimators that involve a grouping,  PST and WCE. In particular, we 
consider principles for the construction of the groups. 
 

10.2.3. Which grouping is optimal? 

An effective type of auxiliary information is one that permits a grouping of 
the elements of the population into poststrata (or the elements of the sample 
into weighting classes). As Section 10.2.2 shows, the groups should, ideally, 
be homogeneous with respect to response probabilities and/or the study 
variable values. To establish such a grouping is not a trivial task. A number 
of issues enter into consideration, as we will now discuss.   
 
The simple EXP estimator (6.6.1) involves no groups, but it provides a 
benchmark with which we can compare the usually better alternatives that 
use groups. As Table 10.2.1 states, EXP is obtained from the general 
estimator (6.3.2) under the simplest possible formulation of the auxiliary 
vector, 1=kx   for all  k, and  1=kc   for all  k. With these specifications the 

general expression (10.2.3) for the nonresponse bias becomes:  
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  and  E y Yk k= − . Another way of writing (10.2.6) is  
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with  θ θ= ∑
1

N kU , is the finite population correlation coefficient between  

y  and  θ ,  
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is the coefficient of variation of  y, and 
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2/12 )1/(
       (10.2.10) 

 
is the coefficient of variation of  θ . Thus, the relative bias satisfies 
 

∑ ≈
U UyUUykEXPpq cvcvRyYB θθ)/()ˆ( . 

 
This relative bias will often be large. One reason is the rudimentary form of 
the residuals  E y Yk k= − . They “correct” only in the simplest possible 
way, namely, by subtracting the overall mean of  y. They can be very large 
(even though their average is zero). Another possibility for a near-zero 
nonresponse bias is that  kθ   is constant for all  k U∈ . Neither of these two 

conditions is likely to hold. We conclude that  EXPŶ   will not give efficient  
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protection against nonresponse bias. Most survey statisticians are well aware 
of this, and they seek more powerful auxiliary information. Grouping is one 
way to improve the situation. 
 
The One way classification discussed in Section 6.6 involves the auxiliary 
vector  x k k pk Pk= ′( ,..., ,..., )γ γ γ1 , where  pkγ   is defined by (6.6.2). If we 

also specify  1=kc   for all  k, we get the poststratified estimator  �YPST , given 

by (6.6.4), or the weighting class estimator  �YWCE , given by (6.6.5). Both 
give rise to the same expression for the nonresponse bias. The question is 
now how to choose the P population groups  pU , Pp ,...,1= , so as to 

reduce the nonresponse bias as far as possible. The specification  1=kc   for 

all  k U∈   is of the form  kkc x�′= /1 , so the nonresponse bias expression 

(10.2.3) applies. After some algebra we get:  
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where  Y
N

yp
p

kU p
= ∑

1
; a Np p kU p

= ∑/ θ   and  E y Yk k p= − . 

 
An equivalent expression is  
 

∑ ∑
=

≈≈
P

p
U UyUUykWCEpqPSTpq p ppp

cvcvRyYBYB
1

)()ˆ()ˆ( θθ   (10.2.12) 

 
where  Ry U pθ , cvyU p

  and  cv U pθ   are defined in analogy with (10.2.8) to 

(10.2.10), with  pU   replacing  U. Formulas (10.2.11) and (10.2.12) confirm 

the message in Tables 10.2.1 and 10.2.2, namely, that the nonresponse bias 
of PST and WCE is eliminated if  (i) the response probabilities are constant 
within every group (because  cv U pθ   is then zero) or  (ii) the ky -values are 

constant within every group (because  cvyU p
  is then zero). In practice, one 

would most likely have to settle for groups in which some variability 
remains both in the ky -values and in the response probabilities. We would 
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like to identify groups that come close to fulfilling one or both of conditions 
(i) and (ii). Let us consider some guidelines for this endeavour. 
 
A grouping that fulfils condition (i) will result in a zero nonresponse bias for 
all study variables in the survey. Attempts to meet condition (i) are therefore 
particularly important. The individual response probabilities  θk   are 
unknown in essentially all applications. Hence, cv U pθ   in (10.2.12) is 

unknown for Pp ,...,1= . However, an indicator of a good grouping is given 
by the between groups component of the total variation of the response 
probabilities, that is, by the second term on the right hand side of  
 

( ) ( ) ( )∑∑ ∑∑
= =

−+−=−
P

p
U

P

p
pppkU k p

N
1 1

222 θθθθθθ    (10.2.13) 

where ∑=
pU k

p
p N

θθ 1
. 

 
The left hand side of (10.2.13) is independent of the grouping, so a grouping 

that increases the between groups component  ( )∑
=

−
P

p
ppN

1

2θθ   will 

decrease the within groups component  ( )∑∑
=

−
P

p
U pkp

1

2θθ . Thus, the 

numerator of  cv U pθ   will decrease for most or all groups. So if several 

groupings are compared, the best alternative, in a certain sense, is the one 
that gives the largest between groups component. This component can be 
estimated from the realised sample, as we will now indicate. Let  skI k ∈, , 

be defined by  
 

I
k s

k =




1

0

if element in sample responds

otherwise
 

 

Then  ∑=
ps kk

p
p Id

N

1θ̂   is an unbiased estimator of  θp , p P= 1,..., , since 
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(As earlier in this CBM, we assume that the response probabilities are 

independent of the realised sample  s.) Similarly, ∑= s kk Id
N

1θ̂   can be 

shown to be an unbiased estimator of  θ . Using the realised sample, with 
any given grouping, we can then compute 
 

2

1

)ˆˆ(∑
=

−
P

p
ppN θθ          (10.2.14) 

 
This estimate of the between groups component is a tool that can be used, 
but with some caution, in the search for an effective grouping. It would be 
misleading to believe that the optimal grouping is the one that maximises 
(10.2.14), because the realised sample  s  is random, and over- or under-
representation of groups will occur by chance. Therefore, information from 
other sources should be used whenever available, for example, evidence 
drawn from other surveys about population groups having atypical response 
rates. 
 
The residuals  pkk YyE −=  are all equal to zero when condition (ii) holds, 

that is, when the  ky -values are constant within groups. Now, most surveys 

are designed to measure several (or even many) study variables. Thus, it is 
difficult to find groups such that the  ky -values are constant not only for 

every group but also for every one of the  y-variables. In trying to meet 
condition (ii) one would have to rely on judgement and earlier experience 
concerning the most important study variables.  
 

10.2.4. A further tool for reducing the nonresponse bias 

Two choices influence the nonresponse bias of  WŶ , namely the auxiliary 

vector  kx   and the factor  ck . Until now we have looked at several well-

known estimators. These have fixed specifications of the  ck . However, we 
can choose the factors  ck   as we like. The choice of the  ck   becomes a tool 
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for keeping the nonresponse bias small. By way of illustration, let us see 
how the formulation of  ck   may influence the nonresponse bias in the case 
where the auxiliary vector is uni-variate, x k kx= .  
 
Tables 10.2.1 and 10.2.2 show that the RA estimator uses  c xk k= −1 , and the 

bias is eliminated when there exists a constant  a  such that  ≈−1
kθ a  for all  

k U∈ . Thus, if we believe that the response probabilities are roughly 
constant throughout the population, then  c xk k= −1   is an appropriate choice. 
 
However, let us look at the more general specification ν−= kk xc . This 

specification inserted in expression (10.2.2) gives us the condition for a zero 
nonresponse bias, namely,  νθ −− +≈ 11 1 kk ax . If we believe that the response 

probability  θk   decreases as  xk   increases we could choose  1<ν  and if we 
believe that the response probability  θk   is increasing as  xk   increases we 
could choose  1>ν .  
 

10.2.5. More extensive auxiliary information 

The better we succeed in incorporating relevant auxiliary information into 
the  kx -vector, the better, generally speaking, are the chances of realising a 

low nonresponse bias. Therefore, building a potent  kx -vector is of 

paramount importance. The statistician must first make an inventory of 
potential auxiliary variables. This process may reveal a surprisingly large 
quantity of potential auxiliary information. This step should be followed by 
a selection of the most pertinent variables. The principles (i) and (ii) in 
Section 10.2.1 should guide this effort. The reasoning was illustrated in 
Sections 10.2.2 to 10.2.4 and in Example 3.2.4.  
 

10.3. Literature review 

There exists a large literature on the selection of auxiliary information and 
on the resulting specification of the auxiliary vector. Different aspects of the 
selection are discussed in the literature. Since some of the recommendations 
made in these articles have relevance also for topics in this CBM, we now 
present a brief literature review.  
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A variety of opinions have been expressed. They cannot easily be 
summarised in a few firm recommendations. Instead we concentrate on five 
important themes relating to the selection of auxiliary variables, (a) to (e) 
below, and review the literature under these themes. The review is not 
exhaustive.  
 
(a) Reduction of the variance  

Nascimento Silva and Skinner (1997) focus on a reduction of  sampling 
error. They do not consider nonresponse. Their intention is to select the 
“optimal” set of auxiliary variables from a rather large set of potentially 
useful variables. They compare different ways to carry out this selection and 
finally recommend a sample-based selection technique. This technique relies 
on an examination of the relationship found in the sample between the study 
variable and the auxiliary variables. By contrast, Bankier, Rathwell, and 
Majkowski (1992) consider a selection method based strictly on the 
auxiliary variables and their interrelationships.  
 
The selection of auxiliary information is also an issue for the construction of 
a sampling design. Although this question falls outside the scope of this 
CBM, we note that several authors have addressed the selection problem 
from this angle.  
 
For example, Kish and Anderson (1978) discuss ways to stratify the 
population for a survey with many study variables and with many purposes. 
They stress that it is important to use many stratifiers (perhaps with 
relatively few categories for each stratifier), rather than many categories for 
each of a few stratifiers:  
 
... the advantages of several stratifiers are much greater for multipurpose surveys... For any 
stratifier, the gains in reducing the variance within strata show rapidly diminishing returns 
with few strata... 
 
A similar principle is likely to work well for the construction of a set of 
poststrata, when the purpose is to reduce the sampling variance.  
 
(b) Reduction of the nonresponse bias 

As pointed out in Section 10.2, the nonresponse bias of the calibration 

estimator  WŶ   is likely to be small when this estimator builds on powerful 

auxiliary information. Principle (i) in Section 10.2 requires that the variation 
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of the response probabilities is explained by the auxiliary vector. Therefore, 
we ought to use all available knowledge and experience about the 
correlation pattern existing between the response probabilities and the 
auxiliary variables. There is a vast literature in this area, based mostly on 
empirical evidence. For example, in surveys on individuals, experience 
gathered from many studies tells us that lower response rates are usually 
expected for the following categories of respondents: metropolitan residents; 
single people; members of childless households; older people; 
divorced/widowed people; persons with lower educational attainment; self-
employed people; see Holt and Elliot (1991) and Lindström (1983). 
Similarly, a number of articles on business surveys analyse response rates 
within subgroups of a population or sample of enterprises. A reference in 
this area is Groves and Couper (1993). 
  
(c) Estimation for domains 

Section 10.2.1 stressed the importance of having access to auxiliary 
information that comes close to identifying the domains (principle (iii)). 
Such information is not always available. The simultaneous estimation for 
several sets of domains creates special problems, as we now illustrate. 
 
Assume that estimates are needed for two sets of domains, defined, 
respectively, by the groups  p = 1, … , P  and the groups  h = 1, … , H  
referred to in the discussion of Two-way classification in Section 6.6. The 
number of responding elements may be very small in many of the  HP ×   
cells arising from crossing the two groupings. We could then base the 
calibration on the one-way classification vector  x k k pk Pk= ′( ,..., ,..., )γ γ γ1   

for the first set of domains and   x k k hk Hk= ′( ,..., ,..., )δ δ δ1   for the second 
set of domains. However, a disadvantage is that different weights are then 
obtained for the two sets of domains. To eliminate this disadvantage we can 
instead use a compromise vector of the two-way classification type 
x k k pk Pk k hk Hk= ′( ,..., ,..., , ,..., ,..., )γ γ γ δ δ δ1 1 . A unique set of weights is then 

obtained. Lundström (1996) has shown, in connection with a specific survey 
at Statistics Sweden, that the variance of the domain estimates tends to be 
only slightly larger for the two-way classification vector than for the 
alternative with two separate vectors. Similar conclusions are found in 
Andersson (1996), for a different survey.  
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(d) Interaction between the objective of variance reduction and the 
objective of nonresponse bias reduction 

Relatively few articles discuss the choice of auxiliary information for the 
dual purpose of sampling variance reduction and nonresponse bias 
reduction. However, many statisticians are aware that a judicious choice of 
auxiliary information can and should serve such a dual purpose.  
 
Little (1986) discusses the choice of suitable groups for the poststratified 
estimator when a large amount of information is available. In the predicted 
mean stratification method, the study variable y is regressed on  x   in the 
response set r and then the strata are constructed by grouping the predicted 
means. In the response propensity stratification method, the strata are based 
on intervals of the estimated response probabilities, called response 
propensity scores. The estimation can be carried out by logistic or probit 
regression fitting. Little (1986) notes that: 
 
…. predicted mean stratification has the virtue of controlling both the bias and variance…; 
response propensity stratification controls … bias, but yields estimates … that may have 
large variance. The latter is particularly true when the response propensity is largely 
determined by variables that are associated with y.  
 
Oh and Scheuren (1983) and Särndal and Swensson (1987) express the 
following views on the question of the dual purpose.  Oh and Scheuren 
(1983) state: 
 
A seemingly robust approach is to choose the subgroups such that for the variable(s) to be 
analyzed, the within-group variation for nonrespondents is small (and the between-group 
mean differences are large); then, even if the response mechanism is postulated incorrectly, 
the bias impact will be small. 
 
Särndal and Swensson (1987) react to this statement as follows: 
 
In our opinion, one must separate the role of the RHGs from that of other information … 
recorded for k s∈ . Two different concepts are involved. The sole criterion for the RHGs 
should be that they eliminate bias as far as possible. Every effort should be made, and a 
prior knowledge used, to settle on groups likely to display response homogeneity. But in 

addition it is imperative to measure, for k s∈ , a concomitant vector  kx , that will reduce 

variance and give added protection against bias. Groups that eliminate or reduce bias are 
not necessarily variance reducing, and, contrary to what the quotation seems to suggest, the 
criterion of maximizing between-to-within variation in y does not necessarily create groups 
that work well for removing bias.  
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Särndal and Swensson (1987) argue in principle for the use of two different 
“concepts”, but they admit that practical problems can arise: 
 
… in order to eliminate bias due to nonresponse, it is vital to identify the true response 
model; as this is usually impossible, bias can be greatly reduced if powerful explanatory x-
variables can be found and incorporated  in a regression-type estimator.  
 
In a similar vein, Bethlehem (1988) states: 
 
...it is very important to look for good stratification variables that will reduce both variance 
and bias.  
 
Some authors warn that the simultaneous reduction of the variance and the 
nonresponse bias may represent a conflict of ambitions. Kalton and 
Maligalig (1991) express this in the following way: 
 
In general, a price paid for adjustment cell weighting is a loss of precision in the survey 
estimators. There is a trade-off to be made between bias reduction and an increase in 
variance arising from the variation in the weights. The increase is not great when the 
variation in weights is modest, but it rises rapidly as the variation increases.... Common 
techniques for restricting the variation in weights are to collapse cells and to trim the 
weights... Since cells with small sample sizes often give rise to large variation in weights, 
minimum sample sizes in the cells are often specified (e.g., 25, 30 or 50). 
 
(e) Problems generated by the random nature of the sample  

Another question discussed in the literature is whether the current sample 
information should be allowed to direct the choice of auxiliary information. 
It has long been known that sample-based selection of auxiliary information 
may affect the properties of the point estimator, particularly its variance. For 
example, Bethlehem (1988) points to the importance of using information 
other than the current sample observations: 
 
The choice of stratification variables cannot be made solely on the basis of the available 
observations. Over or underrepresentation of some groups can mislead us about the 
relationship between the target and the stratification variable. There has to be additional 
information about the homogeneity of the target variable.  
 
A favourable situation arises in a regularly repeated survey. Historical data 
then exist, in addition to the current sample information. 
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However, in some surveys there is no additional or historical information, 
and one must base the selection of the auxiliary variables strictly on the data 
from the current occasion. Nascimento Silva and Skinner (1997) show that 
estimators that use “best possible” auxiliary information selection for each 
realised sample can be effective. That is, there is no a priori decision on the 
auxiliary variables to be used; instead the decision is made upon inspection 
of the realised sample. 
      
A simple and commonly used sample-based technique is the collapsing of 
groups, with a collapsing rule based on the number of respondents in the 
groups of the realised sample. 
      
The choice of groups also affects the performance of the variance estimator. 
Lundström (1996) notes that, in rare instances, the variance estimator (4.4.1) 
can degenerate when the number of  respondents in a group is extremely 
small. 
      
Kalton and Kasprzyk (1986) discuss the negative effects that an excessive 
variability in the weights can have on the variance. They discuss an 
estimator defined in terms of weights that are products of two sets of sub-
weights, where the first set  “... compensates for unequal response rates in 
different sample weighting classes...”  and the second set  “... makes the 
weighted sample distribution for certain characteristics ... conform to the 
known population distribution for those characteristics...”. This can be 
described as a reweighting step followed by a poststratification step. They 
recommend inspecting the final weights and, if some are too large, 
collapsing groups or “trimming the weights” in order to avoid unacceptably 
large variance.  
 
Inspection of the distribution of the final weights is also recommended for 
the calibration approach to reweighting, as discussed in the earlier chapters. 
That is, the variation of the weights  kg , vk   and  vsk   should be analysed. 

When extreme weights occur, the first question to examine is whether two 
or more auxiliary variables measure essentially the same thing so that they 
are collinear. Collinearity, if it exists, should be eliminated. 
 
The problem with highly variable weights can be treated by one of several 
available methods for restricting weights so that they lie within a 
prespecified interval. Procedures of this kind are available in CLAN97.  
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11. Estimation in the presence of nonresponse 
and frame imperfections  

11.1. Introduction  

Many surveys are affected by frame imperfections, often referred to as 
coverage errors. The frame can have undercoverage, overcoverage or both. 
Thus the estimation procedure needs to deal simultaneously and effectively 
with three types of error: sampling error, nonresponse error and coverage 
error. In earlier chapters we have discussed the first two of these.  
 
Incorporating the third type is not a simple step. The theory in regard to 
coverage errors is not yet well developed. In this chapter we provide a 
formal structure for a survey affected by the three types of error and use it to 
indicate a systematic approach to estimation under these conditions. We 
proceed by expanding the theory for reweighting and imputation presented 
in earlier chapters. There are few “conventional” methods in this area, but 
we obtain some of these “benchmarks” as special cases of a general 
approach.  
 
A feature of the treatment of coverage errors is that one is obliged to rely on 
assumptions whose validity is hard or impossible to verify. Many surveys 
display “special problems” for which “special solutions” have been 
proposed. This chapter is a step towards a more systematic outlook.  
 
As in earlier chapters we wish to estimate the target population total  
 

∑= U kU yY          (11.1.1) 

 
where  yk   is the value of the study variable, y, for the  kth  element of the 
target population  },...,,...,1{ NkU = , which may differ from the frame 
population from which sampling is carried out. The situation that we 
address is shown in Figure 11.1.1.  
 
Let  sF   be a sample of size  nF   drawn from the frame population  U F   (of 

size  FN ) with the probability  p sF( ) . The inclusion probabilities, known 
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for all  FUlk ∈, , are then  ∑ ∋= ks Fk F
sp )(π   and  { }∑ ⊃= lks Fkl F

sp, )(π . Let  

dk k= 1 / π   denote the design weight of element  k   and let  dkl kl= 1 / π . 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 11.1.1. 
 
The frame  FU   in Figure 11.1.1, has both undercoverage and overcoverage. 

By the overcoverage set we mean  ( )U U UF F− ∩   and by the 

undercoverage set  ( )FUUU ∩− . The set of elements that respond and 
belong to the target population is denoted by  rp   and its size by  mp . We 

have  r sp F⊆ . The subscript p is used here to suggest the word “persistors”, 

that is, elements that continue to be in scope for the survey. We denote by  
r p\   the set of elements that respond and belong to the overcoverage. Let  

m p\   be the size of  r p\ . The subscript  \ p   is to be interpreted as “non-

persistors”.  
 
The nonresponding set is  pp oo \∪ , where  op   is the part that belongs to 

the target population and  o p\  the part that belongs to the overcoverage. The 

sample Fs  is the union of the four nonoverlapping sets rp , r p\ , op   and  

o p\ . 

Frame population: U F  
Size: N F  

Sample: sF  
Size: nF  

Target population: U  
Size: N pr  op  

o p\  
pr\  
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We assume that every responding element, prk ∈ pr\∪ , can be identified as 

belonging to either  pr   or  pr\ , as the case may be. This identification is 

usually straightforward in practice. Much more problematic in practice is the 
separation of the nonresponding elements into their two subsets, op   and  

o p\ .  

 
The observed  y-data are  ∪∈ pk rky :{ }\ pr ;  y-data are missing for  

∪∈ pok o p\ . We assume that the auxiliary vector value  kx   is available for 

every  FUk ∈ . 

 
The estimation of the target population parameter  ∑= U kU yY   faces the 

following problems:  
 
(i)  the absence of observed y-data from the undercoverage set;  
 
(ii)  the absence of a correct auxiliary vector total for the target population; 
 
(iii)  the difficulty of separating the nonresponse elements into their two 
subsets  op   and  o p\ .  

 
We shall examine two different procedures, (1) and (2), for estimating the 
target population total  UY . Both procedures are hampered, in different 

ways, by problems (i), (ii) and (iii).  
 
(1) Estimation of  UY   by adding two terms, considered in Section 11.2. The 

two terms are: (1A) an estimate of the “persistor total”  
FUUY ∩ , and (1B) a 

term to compensate for the undercoverage total  
FUUUY ∩− . In Section 11.2 

we assume that the compensation in (1B) has been carried out, and we 
address the simpler problem of estimating  

FUUY ∩ . 

 
(2) “Direct estimation” of  UY , considered in Section 11.3.  
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(The notation used in (1) and (2) and in the rest of this chapter is that if A is 
a set of elements, then  AY   denotes the total  ∑A ky .)  

 
The choice between procedures (1) and (2) depends on the auxiliary 
information available in the survey. The compensation in step (1B) is 
problematic. In some surveys, it may be possible to carry out a 
complementary sample selection from the undercoverage set and to base the 
compensation on the information thus gathered. In other cases, one must rely 
on model assumptions and/or the professional judgement of the statistician. 
Auxiliary information may be used both from the current occasion and from 
earlier survey occasions. One can expect some bias in the estimates. A 
systematic approach to this step is presently lacking. If it is possible to arrive 
at a satisfactory compensation for  

FUUUY ∩−  , it seems reasonable to choose 

procedure (1). In other cases, the auxiliary information may be such that 
procedure (2) is considered a good solution. It is carried out with the aid of 
the calibration approach, as Section 11.3 shows.  
 
Problem (iii) has particularly grave consequences when an imputation 
approach is used. We must then impute for the elements  pok ∈ , but this 

objective can only be achieved if there is a correct identification of the set 

po . Problem (iii) also affects the variance estimation for the reweighting 

procedure, as will be discussed in Section 11.2.2.  
 

11.2. Estimation of the persistor total  

11.2.1. Point estimation 

The persistor set  FUU ∩   defines a domain of the target population. This 

set, which we denote by  pd , also defines a domain of the frame population. 

The frame usually contains auxiliary information and we can form an 
auxiliary vector total for  FU , ∑

FU kx . Since we are assuming that the 

sampled elements from  pd   can be readily identified, the estimation of  

Fp UUd YY ∩=   can follow the principles for domain estimation developed in 

Section 6.3. 
 
We work with the domain specific variable  

pdy   such that  
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 ∩=∈

=
                 otherwise       0

  if     Fpk
kd

UUdky
y

p
      (11.2.1)  

 
In the reweighting approach, the estimator of  

pdY   becomes 

 

=Wd p
Ŷ  ∑ ∑∪ =

pp pprr r kkkdk ywyw
\

      (11.2.2) 

 
where  w d vk k k=   with 
 

krr kkkkrr kkU kkk ppppF
cddcv xxxxx 1)()(1

\\

−
∪∪ ∑∑∑ ′′−+=   (11.2.3) 

 
for   ∪∈ prk pr\ . 

 
EXAMPLE 11.2.1. An estimator of  

FUUY ∩   commonly used at Statistics 

Sweden. 

As is common in survey designs at Statistics Sweden, the frame population  

FU   is divided into strata, FhU , Hh ,...,1= , and the sample  Fhs   is drawn 

from  FhU   by SRS. (Whenever necessary in order to identify a stratum, we 

add the index  h  to the notation specified in Figure 11.1.1.) The design 
weight is then  FhFhk nNd /=   for  FhUk ∈ . An estimator of  

FUUY ∩   

commonly used at Statistics Sweden is 
   

∑ ∑
=

∩ +
=

H

h
r k

phph

Fh
UU phF

y
mm

N
Y

1 \

ˆ       (11.2.4) 

 
It should be emphasised that (11.2.4) estimates the persistor set total only 
and would lead to a perhaps considerable underestimation if used for the 
whole target population total  ∑= U kU yY . A visual inspection of the 

weights reveals that they are too small on the average for estimating  UY . A 

compensation term, as discussed in step (1B), must be added.  
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The estimator (11.2.4) can be derived as a special case of the general 
estimator (11.2.2). This requires defining the auxiliary vector as the stratum 
identifier  ′= ),...,,...,( 1 Hkhkkk γγγx , where, for  Hh ,...,1= ,  

 



 ∈

=
otherwise    0

  if    1 Fh
hk

Uk
γ  

 

Then  ( )′=∑ FHFhFU k NNN
F

,...,,...,1x . Let  1=kc   for all k. The matrix to 

invert in (11.2.3) is diagonal, so the derivation of the weights is 
straightforward. We obtain   
 

phph

Fh
k mm

n
v

\+
=   for  ∪∈ phrk phr\   

 

so that  
phph

Fh

phph

Fh

Fh

Fh
k mm

N

mm

n

n

N
w

\\ +
=

+
=   for  ∪∈ phrk phr\ . 

 
We have thus obtained the weights of (11.2.4). 

� 
 
Alternatively, we can consider an UNIMP-imputation approach. We form an 
imputed estimator of  

pdY   in the manner of (7.2.1) and obtain  

 

∑∑ ∪ •• ==
ppF pp or kkks kdkkId ygdygdŶ      (11.2.5)  

 
where  
 

kkkks ks kkU kkk cddcg
FFF

xxxxx 1)()(1 −′′−+= ∑∑∑    (11.2.6) 

 
and  
 





∈
∈

=•  for        ˆ

  for        

pk

pk

k oky

rky
y        (11.2.7)  
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The estimator  Id p
Ŷ   requires that  po   can be identified, which may or may 

not be possible in the survey.  
 
Most of Statistics Sweden's surveys on individuals and households rely on 
sampling from the TPR; see Example 2.2.1. Although the TPR system 
receives new information on a daily basis, the actual updating of the TPR 
presently takes place only once a month. Therefore, in a matching of the 
sample  Fs   with a very recently updated TPR, the determination of the set  

po   will be close to perfect. Even in cases where a few weeks have elapsed 

since the last updating, the coverage errors can be considered small and 
inconsequential.  
 
In surveys on enterprises the situation is less favourable. The BR register 
(see Example 2.2.2) is only updated a few times per year, so at most time 
points, an accurate determination of  op   is not possible.  

 

11.2.2. Variance estimation 

By a straightforward modification of the results of Section 6.4, we derive a 

variance estimator for  Wd p
Ŷ . In the present context with frame 

imperfections, the weight  skv   in Section 6.4 is replaced by  

 

krr kkkkrr kks kkksk ppppF
cdddcv xxxxx 1* )()(1

\\

−
∪∪ ∑∑∑ ′′−+=  (11.2.8)  

 
for ∪∈ prk pr\ . The following variance estimator is obtained:  

 

NRSAMWd VVYV
p

ˆˆ)ˆ(ˆ +=         (11.2.9) 

 
where  
 

=SAMV̂ ( )( )( )−−∑∑ ∪ pp pprr ldsllkdskkkllk evgevgddd
\

**  

 
( ) ( )∑ ∪ −−−

pp prr kdkskskkk egvvdd
\

2** )(11      (11.2.10) 

 
and 



11. Estimation in the presence of nonresponse and frame imperfections 

146 

=NRV̂ ( )∑ ∪ −
pp prr kdskskk evvd

\

2**2 1       (11.2.11) 

 
where  kg   is given by (11.2.6), and  

 

vdkkdkd ppp
ye Bx ˆ′−=         (11.2.12) 

 
with 
 

=vd p
B̂ 1* )(

\

−
∪ ′∑ krr kkskkpp

cvd xx kdrr kkskk ppp
ycvd∑ ∪ \

* x    (11.2.13) 

 
 

11.3. Direct estimation of the target population total 

11.3.1. Introduction 

Both the sampling error and the nonresponse error can be substantially 
reduced when powerful auxiliary information is available and used in 
reweighting by a calibration approach. The methods recommended in 
Chapters 4-8 rest on firm ground. In this chapter, we have the additional 
problem of coverage errors. It is likely that coverage errors, too, can be 
reduced by a calibration approach. One problem is that a strict adherence to 
the principles of calibration requires that the target population total  x kU∑   

be exactly known. Since this condition is unlikely to be met in the presence 
of coverage error, we must find a good approximation. We denote the 

approximation  X
~

. When the auxiliary vector  kx   is made up of variables 

present in the frame, the frame auxiliary total  ∑
FU kx   is easily derived. If 

the coverage deficiencies are deemed inconsequential, it is realistic to take  

∑=
FU kxX

~
. However, if the coverage deficiencies are extensive, it is not 

self-evident how to obtain a good approximation of the total  ∑U kx .  

 
As noted in Section 11.2.1, Statistics Sweden's register on individuals, TPR, 
is updated frequently enough to ensure that the total  ∑=

FU kxX~   will 

always be a rather good approximation of  ∑U kx . The situation is less 

satisfactory in many other surveys.  
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11.3.2. Point estimation 

We discuss first reweighting by the calibration approach, then imputation. In 
the reweighting case, item nonresponse is first treated by imputation. We 
assume that reweighting is applied for the unit nonresponse. 
 
Estimating  ∑= U kU yY   by the calibration approach leads to  

 

∑=
pr kkUW ywŶ          (11.3.1) 

 
with  w d vk k k=   and  
 

( ) ( ) kr kkkkr kkkk pp
cddcv xxxxX 1~

1 −∑∑ ′′
−+=   for k rp∈   (11.3.2) 

 
It is easily seen that the weights have the desired calibration property  

Xx
~=∑

pr kkw . A judicious use of this approach can lead to an estimator  WŶ   

that effectively controls all three types of error (sampling error, nonresponse 
error, coverage error), provided that there is a strong correlation between the 
study variables and the auxiliary vector.  
 
EXAMPLE 11.3.1. An estimator of  UY   commonly used at Statistics 

Sweden. 

Assume that the sample  sF   is drawn by STSRS as described in Example 

11.2.1. An estimator of  UY   commonly used at Statistics Sweden is  

   

∑ ∑
=

=
H

h
r k

ph

Fh
U ph

y
m

N
Y

1

ˆ         (11.3.3) 

 
As we now show, it is the special case obtained from the general formula 
(11.3.1), when the auxiliary vector is defined by the stratum identifier vector  

′= ),...,,...,( 1 Hkhkkk γγγx   as in Example 11.2.1. Assume that the population 

stratum sizes are unchanged between the time of sampling and the time of 
estimation. In other words, in each stratum, the overcoverage is assumed to  
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compensate exactly for the undercoverage. Thus, the required total  

( )′= FHFhF NNN ,...,,...,
~

1X  is known. Let  1=kc   for all k.   

 

Some algebra shows that  kv , given by (11.3.2), takes the form  =kv
ph

Fh

m

n
  

for all  phrk ∈  , so that the total weight of element  k  becomes  

ph

Fh

ph

Fh

Fh

Fh
k m

N

m

n

n

N
w ==   for all  phrk ∈ . This is the weight of  ky   in 

(11.3.3).   
� 

 
In the UNIMP-imputation approach, we suggest the estimator  
 

∑ ∪ •=
pp or kkUI ywŶ         (11.3.4) 

  
where  ky•   is given by (11.2.7), and  w d vk k k=   with  

 

kor kkkkor kkkk pppp
cddcv xxxxX 1)()~(1 −

∪∪ ∑∑ ′′−+=    (11.3.5) 

  
for  pp ork ∪∈ . A requirement is that  po   is identifiable.  

 

11.3.3. Variance estimation 

When there are no coverage errors, Section 6.4 suggests a variance estimator 

for  WŶ   given by (6.4.1). We now modify this variance estimator to so that 

it can be used for  UWŶ   given by (11.3.1). 

 
Recall that the variance estimator (6.4.1) was derived from a two-phase 
sampling argument in which the response probabilities play the role of 
second phase inclusion probabilities. Because these probabilities are 
unknown, they were replaced by proxies. To obtain (6.4.1), the proxies were  

skv/1 , where  skv   is given by (6.3.7). But in the present case of coverage 

imperfections the weights  skv   are not defined, so they must be replaced. 

We present two alternatives for this. 
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Supposing for the moment that the  skv   are known quantities, we change the 

notation in (6.4.1) to better represent the current situation with coverage 
errors. For simplicity we set  1=kg   for all k. We obtain 

 

NRSAMUW VVYV ˆˆ)ˆ(ˆ +=         (11.3.6) 

 
where  
 
 

∑∑ −−=
pr lslkskkllkSAM evevdddV ))()((ˆ  

 
( ) 2)1(1 kskskkr k evvdd

p
−−− ∑       (11.3.7) 

 
and 
 

∑ −=
pr kskskkNR evvdV 22 )1(ˆ        (11.3.8) 

 
where  
 

vkkk ye Bx ˆ′−=          (11.3.9) 

 
and  
 

∑∑ −′=
pp r kkkskkr kkkskk ycvdcvd xxxB 1)(ˆ

ν     (11.3.10) 

 
However, the  skv   given by (6.3.7) cannot be used in the present situation. 

They must be replaced by more suitable quantities, such that their inverse 
values can be considered as proxies for the unknown response probabilities. 
We suggest two alternatives for this. 
 
Alternative 1 

In formulas (11.3.6) to (11.3.10), replace skv   by  *
skv   given by (11.2.8). 

This produces a variance estimator for UWŶ  which does not require an 

identification of the set op . 
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Alternative 2 

A potential weakness with the  *
skv   in Alternative 1 is that the elements in 

the overcoverage do not belong to the target population and may therefore 
be less prone to respond than those that truly belong. Since the overcoverage 
elements are not targeted, they may experience some or all items on the 
questionnaire as being irrelevant. To involve the set  pr\   in the calibration, 

as is the case in (11.2.8), is then questionable. Instead, Alternative 2 is as 
follows:  In formulas (11.3.6) to (11.3.10), replace  skv   by  **

skv   given by 

 

kr kkkkr kkor kkksk pppp
cdddcv xxxxx 1** )()(1 −

∪ ∑∑∑ ′′−+=   (11.3.11) 

 
for  prk ∈ . This produces a variance estimator for  UWŶ   which does require 

an identification of  op . The calibration in (11.3.1) from the set  rp   to the 

set  pp or ∪   seems reasonable.  
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APPENDIX A. Components of the total variance: 
Sampling variance and nonresponse variance 

In this appendix we consider a survey with some nonresponse, but with no 
frame imperfections. That is, the frame and the target population are 
assumed to be identical. We derive the bias, the variance and the mean 

squared error (MSE) of the estimators  �YW   and  �YI   presented in Chapters 6 
and 7. We find that the variance can be represented as the sum of a sampling 
variance component and a nonresponse variance component.  
 

In what follows the nonresponse estimator  �YNR   represents both  �YW   and  
�YI . Further, we denote by  �Y   the expression taken by  �YNR   for the case of 

full response, when  r = s. We call  �Y   the full response estimator. 
 
The discussion in this appendix is sufficiently general that we need not 
specify whether calibration or imputation or a combination is the chosen 

approach. The total error of  �YNR   can be written as 
 
�Y YNR −  = )ˆˆ()ˆ( YYYY NR −+−        (A.1) 

 
or, in words, 
 
Total error = Sampling error + Nonresponse error 
 
We are interested in the usual statistical properties - bias, variance and MSE 

- of  �YNR . This raises the question of the most appropriate probabilistic setup 
for deriving these properties. The derivation requires that several expected 
values be evaluated. For this, we use a probabilistic set-up with two phases. 
An expected value is interpreted as a double averaging process, first over all 
possible samples  s  that can be drawn, and secondly over all the possible 
response sets  r  than can occur for any fixed sample s. The two probability 
distributions involved are the known sampling design  p s( ) , and the 

unknown response mechanism  q r s( ) . Note that for any realised sample  s, 

there are many possible outcomes of the response set  r, so it is necessary to 
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average over all  r, for the given  s. The expected value and variance 
operators are written as  E pq   and  Vpq   when taken simultaneously over  

p s( )   and  q r s( ) ; when the evaluation is with respect to  p s( )   alone, the 

notation will be  E p   and  Vp ; with respect to  q r s( )   alone, the notation 

will be  Eq   and  Vq . 

 
For more detail on the development that follows, the reader is referred to 
Lundström (1997) and to Lundström and Särndal (1999). 
 
Bias 

We assume that the full response estimator is unbiased (or nearly so), that is, 
E Y Yp ( �) −   is 0, or very nearly 0, as is the case for the GREG estimator. By 

definition, the bias is given by  YYEYB NRpqNRpq −= )ˆ()ˆ( , which we can 

express as  )()ˆ( cpNRpq BEYB = , where  Bc   is called the conditional 

nonresponse bias, given a realised sample  s; it is given by 
 

YsYEB NRqc
ˆ)ˆ( −=         (A.2) 

 
The magnitude of this conditional bias depends on the approach chosen for 
treating the nonresponse, and on the response mechanism  q r s( ) . It is in 

general non-zero. The conditional bias is 0 if the nonresponse estimator is 
equal, on average, to the full response estimate for that sample. This is a 
good property. But otherwise, as in essentially all surveys with nonresponse, 
there is a (perhaps substantial) conditional bias. 
 
Variance and mean squared error 

Under the probabilistic set-up with two phases, the variance of a random 
quantity is obtained by the well-known rule “the variance of the conditional 
expectation plus the expectation of the conditional variance”. Applied to  
�YNR  , the two probability distributions being  p s( )   and  q r s( ) , this rule 

gives the  “pq-variance”  
 

)ˆ()ˆ()ˆ( sYVEBYVYV NRqpcpNRpq ++=      (A.3) 
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We know that even if a powerful treatment is used, the nonresponse will 
inevitably cause some bias. We hope that the bias will be small. But it 
follows that a more interesting indicator than the variance would be the 

MSE of  �YNR . The MSE is obtained by adding the squared bias, [ ]E Bp c( )
2
, 

to the variance  V Ypq NR( � ) . After simplification, the MSE can be written as 

 
),ˆ(2)()ˆ()ˆ()ˆ( 2

cpcpNRqppNRpq BYCovBEsYVEYVYMSE +++=   (A.4) 

 
Here, V Yp ( �)   is the variance of full response estimator. The sum of the other 

three terms on the right hand side, ),ˆ(2)()ˆ( 2
cpcpNRqp BYCovBEsYVE ++ , is 

the addition to the MSE caused by nonresponse, despite a hopefully efficient 
approach for treating this nonresponse. The covariance term is not likely to 
be numerically important, but the term  E Bp c( )2   may represent a 

considerable and undesired addition to the MSE. 
 
Ideally, the nonresponse approach will have succeeded in eliminating the 
bias, so that  Bc  = 0  for every possible sample  s. Although this is unlikely 
to occur in practice, we would then have 
 
MSE Ypq NR( � )  = )ˆ()ˆ()ˆ( sYVEYVYV NRqppNRpq +=    (A.5) 

 
It is fitting to call  VNR = )ˆ( sYVE NRqp   the nonresponse variance, because it 

does not involve the nonresponse bias. Letting  VTOT = V Ypq NR( � ) , 

VSAM =V Yp ( �)   and  VNR = )ˆ( sYVE NRqp , we can also write (A.5) as 

 
V V VTOT SAM NR= +            (A.6) 
 
or, in words, 
 
Total variance = Sampling variance + Nonresponse variance 
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APPENDIX B. Proxies of the unknown response 
probabilities to be used in the variance estimator 

Section 6.1 describes the two-phase approach for treating nonresponse. The 
description is based on an estimator suggested by Särndal, Swensson and 
Wretman (1992), which uses auxiliary population totals; see (6.1.2). 
However, they also suggest an estimator in the case when only HT-estimates 
of these totals are known. We will use this estimator in what follows. The 
estimator is   
 

∑= r kkskksSSW ygdY θθ /ˆ
,        (B.1) 

 
where  
 

( ) kr r kkkkkkkks kkksk cdddcg xxxxx ∑ ∑∑ −′′−+= 1/)/(1 θθθ  (B.2) 

 
The corresponding estimator in the calibration approach is the estimator  

WsŶ , given by (6.3.6). To derive a relevant variance estimator for  WsŶ   we 

can argue as follows: The expression (B.1) is based on two-phase sampling 
theory and cannot be used as it stands in the nonresponse situation, because 
the second-phase inclusion probabilities are then unknown. They must 
therefore first be estimated in some way. We raise the following questions: 
What “hypothetical” response probabilities will make  sSSWY ,

ˆ , given by 

(B.1), identical to  WsŶ ? If we replace the unknown  θk   in the variance 

estimator for  sSSWY ,
ˆ   suggested by Särndal, Swensson and Wretman (1992), 

Chapter 9, by such “estimated” response probabilities, will the resulting 
expression provide a good variance estimator for  WsŶ ?  

 
The first question is answered by the following proposition.  
 
Proposition B.1. Let  vsk   be given by (6.3.7). When  θk   is replaced by  
�θk skv= −1 , then  sSSWY ,

ˆ   becomes identical to  WsŶ   given by (6.3.6). Moreover, 
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the values  1ˆ −= skk vθ   satisfy the reasonable condition  ∑ ∑=r s kk
k

kk d
d

x
x

θ̂
. 

When  θk   is replaced by  �θk   in the weights  gskθ , given by (B.2), then these 

weights are equal to unity for all  k.  
� 

 
The proof of the proposition is given in Lundström (1997).  
 
The equivalence of  sSSWY ,

ˆ   and  WsŶ   stated in Proposition B.1 suggests the 

following procedure: For  WsŶ , we propose to use the variance estimator 

given by Särndal, Swensson and Wretman (1992), formula (9.7.28), where 
we replace  

askπ   by  kθ   and then  kθ   by the proxy value  kθ̂ = skv/1  , 

where  vsk   is given by (6.3.7). We also assume that elements respond 
independently.  
 
To derive an estimator of the variance of  WŶ ,  given by (5.2.3), we propose 

a similar approach: In the variance estimator given by Särndal, Swensson 
and Wretman (1992), formula (9.7.22), replace  

askπ   by  kθ   and then  kθ   

by the proxy value  kθ̂ = skv/1  , where  vsk   is given by (6.3.7). We also 

assume that elements respond independently. Several simulation studies 
reported in Lundström (1997) show that the suggested variance estimators 
for  WsŶ   and  WŶ   work well.  
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APPENDIX C. A general expression for the 
nonresponse bias for the calibration estimator  

In this section a general expression of the nonresponse bias is developed. 
Special cases of this general expression, corresponding to specific  x k -
vectors, are derived and discussed in Sections 10.2.2 and 10.2.3. We assume 
that the response probabilities, )Pr( srk�k ∈= , are independent of the 

realized sample  s.          
 
Proposition C.1.  For large response sets the nonresponse bias of  �YW   given 
by (6.3.2) is  
 

kU kWpq EYB θθ∑ −−≈ )1()ˆ(        (C.1) 

 

where  θθ Bx kkk yE ′−=   and  ( ) ∑∑ −′= U kkkkU kkkk ycc xxxB θθθ
1 .  

 
For large response sets, the right hand side of (C.1) also represents the 
approximate nonresponse bias of  WsŶ   given by (6.3.6). 

� 

 
PROOF. It is easily seen that the estimator  WŶ   given by (6.3.2) can be 

written  

 

( )∑∑ ′−+′= r rkkkU rkW ydY BxBx ˆˆˆ       (C.2) 

 

where  ( ) ∑∑ −′= r kkkkr kkkkr ycdcd xxxB 1ˆ .   

 

Thus, the error  YYW −ˆ   can be written 
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( ) =−′−+′=− ∑∑ ∑ U kU r rkkkrkW yydYY BxBx ˆˆˆ  

 
( ) ( )+′−−′−= ∑∑ U kkr kkk yyd BxBx   

 

( ) ( )BBxx -ˆ
rU r kkk d ′−+ ∑ ∑        (C.3) 

 

where  ( ) ∑∑ −′= U kkkU kkk ycc xxxB 1 . 

 

However, 

 

( ) ∑∑ −′= r kkkkr kkkkr Ecdcd- xxxBB 1ˆ      (C.4) 

 
where  Bx kkk -yE ′= . 

 

For large response sets  

 

( ) ≈′ ∑∑ − ][ 1

r kkkkr kkkkpq EcdcdE xxx EθB  

 

where 

 

EθB ( ) ∑∑ −′= U kkkkU kkkk Ecc xxx θθ 1 . 

 

However, it is easily seen that  

 
BBB −= θθE          (C.5) 

 

where   

 

( ) ∑∑ −′= U kkkkU kkkk ycc xxxB θθθ
1 . 
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Consequently, the nonresponse bias  )ˆ( Wpq YB   can be approximated by  

 
≈−= YYEYB WpqWpq )ˆ()ˆ(  

 

( )′−−−≈ ∑ ∑ ∑∑ U U U kkkkU kk EE xxθθ ( ) =− BBθ  

 
( ) =−′−+−−= ∑∑ BBx θθθ kkUkkU E )1()1(  

 
( ) =′−+−−= ∑∑ θθθ Bx kU kkU k y )1(1 ( ) kU k Eθθ∑ −− 1   (C.6) 

 
where  θθ Bx kkk yE ′−= . 

 
It is easily seen that the estimator  WsŶ   can be written  

 
( )∑∑ ′−+′= r rkkks rkWs ydY BxBx ˆˆˆ    

 

and then the expression corresponding to (C.6) will be  

 
( ) ( )+′−−′−=− ∑∑ s kkkr kkkWs ydydYY BxBxˆ  

 

( ) ( )BBxx -dd rs r kkkk
ˆ′−+ ∑ ∑ ∑ ∑−+ s U kkk yyd    (C.7) 

 
It is easy to repeat the steps from (C.1) to (C.6) of the proof of Proposition  
C.1 and conclude that the same approximate bias expression holds for the 

estimator  WsŶ . The following corollary is easily derived. 

� 
 
Corollary.  Suppose that  kkc x�′= /1   for all  k U∈ , where  �′   is a 

constant column vector of the same dimension as  kx   and not dependent on  

k. Then, for large response sets,  
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∑−≈ U kWpq EYB θ)ˆ(         (C.8) 

  
or equivalently,  
 

EU kWpq YB θB∑ ′≈ x)ˆ(         (C.9) 

 
where 
 

( ) ∑∑ −′= U kkkkU kkkkE Ecc xxx θθθ
1B      (C.10) 

� 
 
 
Proposition C.2.  If there exists a constant column vector  λ   such that  

kkk c x�′+=− 11θ   for  k U∈   then  B Ypq W( � ) ≈ 0 , where  )ˆ( Wpq YB   is given 

by either (C.1) or (C.8).  
� 

 

PROOF.  After some algebraic manipulations of expression (C.1) we will 

have  

  

∑∑∑ −−′−′≈ U kkU kkU kWpq yYB )1()ˆ( θθ θθ BxBx    (C.11) 

 
Multiply the term for element  k  in the first sum on the right hand side  
of (C.11) by  )1( kkk c x�′+θ  = 1  and it becomes  

 
=′′+′=′ ∑∑∑ θθθ θθ Bxx�BxBx )( kU kkkU kkU k c  

 
=′′′+′= ∑∑∑∑ − )()()( 1

kkU kkU kkkkU kkkkU kk yccc xxxxx�Bx θθθθ θ  

 

kkU kkU kk yc x�Bx ′+′= ∑∑ θθ θ  
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However, since  kkkk c θθ −=′ 1x� ,  

 
( )∑∑∑ −+′=′ U kkU kkU k yθθ θθ 1BxBx  

 

It follows that (C.11) equals zero.  
� 

 
Remark C.1.  It is easily seen that the component  ∑U kkkk Ec xθ   in 

expression (C.10) will be a vector of zeros, when the population residual  
Ek = 0   for all  k, and consequently the nonresponse bias will be zero.  

� 
 
Remark C.2.  Assume that each element responds with the same probability  

0θθ =k   for all  k. Then the expression (C.1) becomes  

B Y Epq W kU( � ) ( )≈ − − ∑1 0θ . When the factors  ck   are completely general 

there is no guarantee that  EkU∑ = 0   and thus, that the bias will be zero. 

However, if  kkc x�′= /1   for all  k U∈ , then  EkU∑ = 0 .  

� 
 
Bethlehem (1988) and Fuller, Loughin and Baker (1994) also discuss 
expressions of the nonresponse bias.  
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APPENDIX D. Cases where imputation and 
reweighting result in the same estimator 

Proposition D.1.  Consider the imputed GREG estimator IŶ   given by 

(7.2.1), where kg   is given by (4.3.4), and assume that GREG-conformable 

multiple regression imputation is used so that, for  rsok −=∈ ,  �z ˆˆ kky ′= , 

where  ( ) ∑∑ −′= r kkkr kkk yqq zzz�
1ˆ , with  q d ck k k=   and  z xk k= . Then 

the imputed GREG estimator is identical to the reweighted estimator  �YW   

given by (6.3.2), that is, �YI  = �YW   for every possible response set  r. 
� 

 

PROOF.  The imputed GREG estimator  ∑ •= s kkkI ygdŶ , where   

( ) ks kkkks kkU kkk cddcg xxxxx 1)(1 −∑∑∑ ′′−+= , can be written 

 

∑∑∑ =+== • o kkkr kkks kkkI ygdygdygdY ˆˆ  

  

�z ˆ)( ko kkr kkk gdygd ′+= ∑∑        (D.1) 

 

Let us examine the two components  (i)  ∑r kkk ygd   and  (ii)  

�z ˆ)( ko kk gd ′∑   at the right hand side of (D.1). 

 

The component (i) can be written   

 

d g y d y Ck k k k krr = +∑∑        (D.2) 

 

 where  ( )C d d c d c ykU k ks k k k ks k k k kr= − ′ ′∑ ∑ ∑ ∑−
( )x x x x x

1
.  
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Moreover, the component (ii) can be written: 

 

=′−=′−=′ ∑∑∑∑∑ �zz�zz�z ˆ)(ˆ)(ˆ)( kr kkU kkr kkks kkko kk gdgdgdgd  

 

= −′−∑∑ r kkU k d �zz ˆ)(  

 

( ) ( )∑∑∑∑ ′′′−− −
r kkkks kkkks kkU k cdcdd zxxxxx 1)( �̂   (D.3) 

 

Since  q d ck k k=   and  z xk k= , the vector  �̂   has the form 

 

�̂ = ( ) ∑∑ −′
r kkkkr kkkk ycdcd xxx 1       (D.4) 

 

Insering expression (D.4) into expression (D.3), component (ii) becomes  

 

∑∑ ′− r kkU k d )( xx ( ) ( )d c d c yk k k kr k k k krx x x′ −∑ ∑−1
 

 

( ) ( )×′′′−− ∑∑∑∑ −
r kkkks kkkks kkU k cdcdd xxxxxx 1)(  

 

( ) ( )∑∑ −′× r kkkkr kkkk ycdcd xxx 1 = 

 

= ( )x xkU k kr d− ′∑ ∑ ( ) ( )d c d c yk k k kr k k k krx x x′ −∑ ∑−1
C  (D.5) 

 

By adding (D.2) and (D.5) it follows that  

 

∑= r kkI ywŶ          (D.6) 

 

where kkk vdw =   and kv  is given by (6.3.3).  
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This is exactly the expression for  WŶ   given by (6.3.2).  

� 

 

Proposition D.2. Consider the imputed HT estimator (7.2.3) and use, for  

rsok −=∈ , GREG-conformable multiple regression imputation according 

to  �z ˆˆ kky ′= , where  ( ) ∑∑ −′= r kkkr kkk yqq zzz�
1ˆ , with  q d ck k k=   and  

z xk k= . Then the resulting imputed HT-estimator is identical to the 

reweighted estimator  WsŶ   given by (6.3.6), that is, �YI  = WsŶ   for every 

possible response set  r.  
� 

 

PROOF. The imputed estimator  ∑ •= s kkI ydŶ   can be written 

 

�z ˆ)(ˆˆ
ko kr kko kkr kks kkI dydydydydY ′+=+== ∑∑∑∑∑ • = 

 

=′−+= ∑∑∑ �zz ˆ)( kr kks kr kk ddyd  

 

= +∑ d yk kr ( )d dks k kr k∑ ∑− ′z z ( ) ( )∑∑ −′
r kkkr kkk yqq zzz 1   (D.7) 

 

Insert  q d ck k k=   and  z xk k=   into (D.7) and it follows that  

∑= r kskkI yvdŶ , where  skv   is given by (6.3.7). Thus, �YI  = WsŶ   for every 

possible response set  r.   
� 

 
Gabler and Häder (1999) present alternative proofs of Propositions  D.1  and  
D.2  based on the conditional minimax principle.  
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