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Design for estimation Preface 

Preface  
Nonresponse occurs in essentially all sample surveys, and, seemingly, 
at ever increasing rates. As a result, the quality of the statistics 
produced in a survey is at stake, unless powerful adjustment 
procedures can be brought to bear. Statistics Sweden is in a 
relatively favourable position, because the many administrative 
registers that are available provide a rich source of auxiliary 
information useful for nonresponse adjustment in estimation by 
calibration. 

The present article by Carl-Erik Särndal and Sixten Lundström, 
Design for estimation: Identifying auxiliary vectors to reduce nonresponse 
bias is a continuation of Statistics Sweden’s commitment to research 
on nonresponse adjustment methods. It further develops the ideas 
in an earlier article by the same two authors, Assessing auxiliary 
vectors for control of nonresponse bias in the calibration estimator, 
Research and Development report 2007:2.  

The indicators presented in the present article provide further useful 
tools for selecting the most powerful ones among the many auxiliary 
variables available in Sweden for purposes of nonresponse bias 
adjustment. 
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1 Introduction 
Large nonresponse is typical of many surveys today. This creates a 
need for techniques for reducing as much as possible the non-
response bias in the estimates. Powerful auxiliary information is 
needed. Administrative data files are a source of such information. 
The Scandinavian countries and some other European countries, 
notably the Netherlands, are in an advantageous position. Many 
potential auxiliary variables (called x-variables) can be taken from 
high quality administrative registers where auxiliary variable values 
are specified for the entire population. Variables measuring aspects 
of the data collection is another useful type of auxiliary data. Effec-
tive action can be taken to control nonresponse bias. Beyond sam-
pling design, design for estimation becomes, in these countries, an 
important component of the total design. Statistics Sweden has 
devoted considerable recourses to the development of techniques 
for selecting the best auxiliary variables. 

Many articles discuss weighting in surveys with nonresponse and 
the selection of “best auxiliary variables”. Examples include Eltinge 
and Yansaneh (1997), Kalton and Flores-Cervantes (2003), and 
Thomsen et al (2006). Weighing in panel surveys with attrition 
receives special attention in, for example, Rizzo, Kalton and Brick 
(1996), who suggest that “the choice of auxiliary variables is an 
important one, and probably more important than the choice of the 
weighting methodology”. The review by Kalton and Flores-
Cervantes (2003) provides many references to earlier work. As in 
this paper, a calibration approach to nonresponse weighting is 
favoured in Deville (2002) and Kott (2006).  

Some earlier methods are special cases of the outlook in this article, 
which is based on a systematic use of auxiliary information by cali-
bration at two levels. Recently the search for efficient weighting has 
emphasized two directions: (i) to provide a more general setting 
than the popular but limited cell weighting techniques, and (ii) to 
quantify the search for auxiliary variables with the aid of comput-
able indicators. Särndal and Lundström (2005, 2008) propose such 
indicators, while Schouten (2007) uses a different perspective to 
motivate an indicator. 
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This content of this article has four parts: The general background 
for estimation with nonresponse is stated in Sections 2 to 4. Indica-
tors for preference ranking of x -vectors are presented in Sections 5 
and 6, and the computational aspects are discussed. The linear alge-
bra derivations behind the indicators is presented in Sections 7 and 
8. The two concluding Sections 9 and 10 present two empirical 
illustrations, one using data for a constructed population, and the 
other using data from a large survey at Statistics Sweden. 
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2 Calibration estimators for a 
survey with nonresponse 
A probability sample s  is drawn from the population 

{ }NkU ,...,,...,2,1= . The sampling design gives unit k the known 

inclusion probability 0)Pr(π >∈= skk  and the known design 

weight kkd 1/π=  . Nonresponse occurs. The response set  r  is a 

subset of s . We assume Usr ⊂⊂ , and r  non-empty. The (design 
weighted) response rate is 

 
∑
∑=

s k

r k

d
d

P                (2.1) 

Ordinarily a survey has many study variables. A typical one, 
continuous or categorical,  is denoted y . Its value for unit k is ky , 

recorded for rk∈ , not available for rUk −∈ . We seek to estimate 
the population  y -total, ∑= U kyY . Many parameters of interest in 

the finite population are functions of several totals; we focus on a 
typical one. (If A  is a set of units, UA ⊆ , a sum ∑

∈Ak
will be written 

as ∑A
.) 

The auxiliary information is of two kinds. To these correspond two 
vector types, ∗

kx  and o
kx . Population auxiliary information is 

transmitted by ∗
kx , a vector value known for every Uk∈ . Thus 

∑ ∗
U kx  is a known population total. Alternatively, we allow that 

∑ ∗
U kx  is imported from an exterior source and that ∗

kx  is a known 

(observed) vector value for every sk∈ . Sample auxiliary information 

is transmitted by o
kx , a vector value known (observed) for every 

sk∈ ; the total ∑U k
ox  is unknown but is estimated without bias by 

∑s kkd
ox . The auxiliary vector value combining the two types is 

denoted kx . This vector and the associated information is 
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 kx = ⎟⎟
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Tied to the thk  unit is the vector )θ,π,,( kkkky x . Here, kπ  is known 

for all Uk∈ , ky  for all rk∈ , the component ∗
kx  of kx  carries 

population information, the component o
kx  of kx  carries sample 

information. The response probability )Pr(θ srkk ∈=  is unknown 
for all k. It is assumed positive and independent of s . Although 
called “response probability”, kθ  is seen more generally as the 

probability that the value ky  gets recorded. With probability kθ-1 , 
it goes missing, for whatever reason. Apart from the notion of 
response probabilities we make no assumptions on the response 
mechanism.  

Many x -vectors can be formed with the aid of variables from 
administrative registers, survey process data or other sources. 
Among all the vectors at our disposal, we wish to identify the one 
most likely to reduce the nonresponse bias, if not to zero, so at least 
to a near-zero value. 

We consider vectors having the property that there exists a constant 
non-null vector µ  such that 

 1=′ kxµ  for all Uk∈                           (2.3) 

“Constant” means that 0µ ≠  does not depend on k, nor on s or r. 
Condition (2.3) simplifies the mathematical derivations in this paper 
and does not severely restrict kx . Most x -vectors that are useful in 

practice are in fact covered. Examples include: (1) ),1( ′= kk xx , 

where kx   is the value for unit  k  of a continuous auxiliary variable  

x; (2) the vector representing a categorical x-variable with J
mutually exclusive and exhaustive classes, 

),...,,...,( 1 ′== Jkjkkkk γγγγx , where 1=jkγ  if  k  belongs to group  j,  

and 0=jkγ  if not, Jj ...,,2,1= ; (3) the vector kx  used to codify two 

categorical variables, the dimension of  kx  being 121 −+ JJ , where 

1J  and 2J  are the respective number of classes, and the ‘minus-one’ 
is to avoid a singularity in the computation of weights calibrated to 
the two arrays of marginal counts; (4) the extension of (3) to more 
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than two categorical variables. Vectors of the type (3) and (4) are 
especially important in statistics production in statistical agencies.  
(The choice kk x=x , not covered by (2.3), leads to the nonresponse 
ratio estimator, known to be a usually poor choice for controlling 
nonresponse bias, compared with ),1( ′= kk xx ,  so excluding the 
ratio estimator is no great loss.) 

The calibration estimator of ∑= U kyY , computed on the data ky  

for rk∈ , is 

 kr kCAL ywY ∑=ˆ                          (2.4) 

with })()(1{ 1
kr kkkr kkkk dddw xxxxX −∑∑ ′′−+= . The weights kw  

are calibrated on both kinds of information: Xx =∑r kkw , which 

implies ∑∑ ∗∗ =
U kr kkw xx  and oo

ks kkr k dw xx ∑∑ = . We assume 

throughout that the symmetric matrix ∑ ′
r kkkd xx  is nonsingular. 

(For computational reasons, it is prudent to impose a stronger 
requirement: The matrix should not be ill-conditioned, or near-

singular.) In view of (2.3), we have kr kCAL ywY ∑=ˆ  with weights 

kkk vdw =  where kr kkkk dv xxxX 1)( −∑ ′′= . The weights satisfy 

Xx =∑r kkkvd , where X  has one or both of the components in 

(2.2). 

We shall consider a closely related calibration estimator based on 
the same two-tiered vector kx  but with calibration only to the 
sample level: 

 kr kkCAL ymdY ∑=~
           (2.5) 

where  

 kr kkks kkk ddm xxxx 1)()( −∑∑ ′′=              (2.6) 

The calibration equation then reads kr kkmd x∑  = ks kd x∑ , where 

kx  has the two components as in (2.2). The auxiliary vector kx  
serves two purposes: To achieve a low variance and a low 

nonresponse bias. From the variance perspective alone, CALŶ  is 
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usually preferred to CALY~  because the former profits from the input 

of a known population total ∑ ∗
U kx . But this paper studies the bias. 

From that perspective, we are virtually indifferent between CALŶ  and 

CALY~ , and we focus on the latter. Under liberal conditions, the 

difference between the bias of CALYN ˆ1−  and that of CALYN ~1−  is of 

order 1−n , thereby of little practical consequence even for modest 
sample sizes n , as discussed for example in Särndal and Lundström 
(2005). 

An alternative expression for  CALY~  defined by (2.5) is 

 =CALY~ xBx )( ′∑s kkd      (2.7) 

where 

 kr kkkr kkdr ydd ∑∑ −′== xxxBB xx
1)(;    (2.8) 

is the regression coefficient vector arising from the ( kd -weighted) 

least squares fit based on the data ),( kky x  for rk∈ . 

A remark on the notation: When needed for emphasis, a symbol has 
two indices separated by a semicolon. The first of these shows the 
set of units over which the quantity is computed and the second 
indicates the weighting, as for example in dr;xB  in (2.8), and in 

weighted means such as ∑∑= r kkr kdr dydy /; . 
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3 Points of reference 
The most primitive choice of vector is the constant one, 1=kx  for all  
k . Although inefficient for reducing nonresponse bias, it serves as a 
benchmark. Then Pmk /1=  for all k, where P  is the survey 

response rate (2.1), and CALY~  is the expansion estimator: 

 drkr kEXP yNydPY ;
ˆ)/1(~

== ∑        (3.1) 

where ∑= s kdN̂  is design unbiased for the population size N.  The 

bias of EXPY~  can be large.  

At the opposite end of the bias spectrum are the unbiased, or nearly 
unbiased, estimators obtainable under full response, when sr = . 
They are hypothetical, not computable in the presence of 
nonresponse. Among these are the GREG estimator with weights 
calibrated to the known population total ∑ ∗

U kx , 

 kks kFUL ygdY ∑=ˆ  

where ∑∑∑ ∗−∗′∗∗∗ ′−+=
s kkkks kkU kk ddg xxxxx 1)1 ()( , and FUL 

refers to full response. The unbiased HT estimator (obtained when 
1=kg  for all  k) is  

 dsks kFUL yNydY ;
ˆ~

==∑                   (3.2) 

It disregards the information ∑ ∗
U kx , which may be important for 

variance reduction. But for the study of bias in this paper, we are 

indifferent between FULŶ  and FULY~ . The difference in bias between 
the two is of little consequence, even for modest sample sizes. We 

can focus on FULY~ . 
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4 The bias ratio 
Consider CALY~ , EXPY~  and FULY~ , defined respectively by (2.7), (3.1) 

and (3.2). The nearly unbiased FULY~  represents an ideal that cannot 

be computed, since it depends on missing y -values. Both EXPY~  

(generated by the primitive vector 1=kx ) and CALY~  (generated by a 
better x -vector) are computable under nonresponse, but biased. As 

the x -vector improves, CALY~  will distance itself from EXPY~  and come 

near the nearly unbiased FULY~ . 

This leads us to consider three deviations: FULEXP YY ~~ − , CALEXP YY ~~ −  

and FULCAL YY ~~ − , of which only the middle one is computable. The 

unknown “deviation total”, FULEXP YY ~~ − , is decomposable as 
“deviation accounted for” (through the choice of  x -vector) plus 
“deviation remaining”: 

 FULEXP YY ~~ −  = ( CALEXP YY ~~ − )  +  ( FULCAL YY ~~ − )   (4.1) 

If computable, FULCAL YY ~~ −  would be of particular interest, as an 

estimate of the bias remaining in CALY~  (and in CALŶ ), whereas 

FULEXP YY ~~ −  would estimate the usually much larger bias of the 

benchmark, EXPY~ . The bias ratio, which sets the estimated bias of 

CALY~  in relation to that of EXPŶ , is defined for a given outcome ),( rs
as 

 
FULEXP

FULCAL

YY
YY
~~
~~

ratiobias
−
−

=          (4.2) 

The goal is to choose the auxiliary vector kx used in CALY~  so that the 
bias ratio is small. We scale the three deviations in (4.1) by the 

estimated population size ∑= s kdN̂ and use the notation 
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RAT ∆+∆=∆ , where T suggests “total”, A “accounted for” and R  

“remaining”. Noting that 0)( =′−∑ xBxkkr k yd , we have 

 dsdrFULEXPT yyYYN ;;
1 )~~(ˆ −=−=∆ −  

 xx BxxBx )()~~(ˆ
;;;;

1 ′−=′−=−=∆ −
dsdrdsdrCALEXPA yYYN  

 dsdsFULCALR yYYN ;;
1 )~~(ˆ −′=−=∆ −

xBx  

where ∑∑= s kks kds dd /; xx , ∑∑= r kkr kdr dd /; xx , and dsy ;  and 

dry ;  are the analogously defined means for the y -variable.  

To summarize, for a given survey outcome ),( rs  and a given y -

variable, the three deviations have the following features:  (i) T∆
cannot be computed; it depends on unobserved (as well as 
observed) ky -values, but not on any kx -values ; (ii) A∆  is 

computable; it depends on ky  for rk∈  and on kx  for sk∈ ; the 

choice of x -vector determines the value of A∆ ; (iii) R∆  cannot be 

computed; it depends on unobserved  ky , and on kx  for sk∈ .  

For a given survey outcome ),( rs  and a given y -variable, the total 

deviation T∆ = dsdr yy ;; −  is an unknown constant value, not 

influenced by the choice of x -vector. It can have either sign. 

Suppose 0>∆T , indicating a positive bias in EXPY~ , as when large 

units respond with greater propensity than small ones. Then A∆  

and R∆  are usually of the same positive sign, although not 

necessarily so for all choices of x -vector. It can happen that TA ∆>∆  

so that 0<∆R . When the x -vector used for CALY~  becomes 

progressively more powerful, A∆  tends to come near T∆ , leaving a 

small R∆ .  If  0<∆T , these tendencies are reversed. 

The bias ratio (4.2) takes the form 

 
dsdr

dsdr

T

A

T

R

yy ;;

;; )(
11ratiobias

−

′−
−=

∆
∆

−=
∆
∆

= xBxx
  (4.3) 
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We have 1ratiobias =  for the primitive vector 1=kx . However, 

0ratiobias ≈  is a desirable goal. For the given outcome ),( rs  and 
the given y -variable, we obtain this goal by finding an x -vector 
that gives a large absolute value of the computable numerator 

xBxx )( ;; ′−=∆ dsdrA . This is within our reach. Whatever our final 

choice, the remaining bias of CALY~  is unknown. 

A typical survey has many y -variables. To every y -variable 
corresponds a calibration estimator, and a bias ratio given by (4.3). 
The ideal x -vector is one capable of controlling bias in all 
estimators. This is usually not possible without compromise, as we 
discuss later. 

The form of (4.3) may suggest a reasoning which is however 
misleading: Suppose a certain vector kx  has been suggested, 
containing variables thought to be effective, along with an 
assumption that kkky ε+′= xβ , where kε  is a small residual. Then 

βxxBxx x )()( ;;;;;; ′−≈′−≈− dsdrdsdrdsdr yy , and consequently 

0ratiobias ≈ , sending the message, which may be false, that the 

postulated vector kx  is efficient. The weakness of the argument is 

that nonresponse causes xB  to be biased for a regression vector that 
may perfectly well describe a y -to-x relationship in the population. 
More incisive analysis is required. Further comments on this issue 
are given in Section  8. 
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5 Expressing the deviation  
 accounted for 
The responding unit k receives the weight kkmd  in the estimator 

kr kkCAL ymdY ∑=~
. The factor kr kkks kkk ddm xxxx 1)()( −∑∑ ′′=  

brings a nonresponse adjustment to the design weight kd . We can 

view km  as the value of a derived variable, defined for a particular 

outcome ),( sr  and choice of kx , independent of all y -variables of 

interest, and computable for sk∈  (but used in CALY~  only for rk∈ ). 
We have 

 ∑∑ =
s kkkkr k dmd xx  ;      kr kmd∑  = ∑s kd  ;      

 ∑∑ =
s kkr kk mdmd 2  (5.1) 

Two weighted means are needed : 

 
Pd

d
d
md

m
r k

s k

r k

kr k
dr

1
; ===

∑
∑

∑
∑

      ;      
∑
∑=

s k

s kk
ds d

md
m ;   (5.2) 

where P  is the response rate (2.1). Thus the average adjustment 

factor in kr kkCAL ymdY ∑=~
 is P/1 , regardless of the choice of x -

vector. Whether a chosen x -vector is efficient or not for reducing 
bias will depend on higher moments of the km . The weighted 

variance of the km  is 

 2
;

2
;

2 )(1
drkr k

r k
drmm mmd

d
SS −== ∑∑

      (5.3) 

The simpler notation 2
mS  will be used. A development of (5.3) and a 

use of (5.1) and (5.2) gives 

 2
mS )( ;;; drdsdr mmm −=           (5.4) 

The coefficient of variation of the km  is 
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dr

m
m m

Scv
;

=  1
;

; −=
dr

ds

m
m

                     (5.5) 

The weighted variance of the study variable y  is given by 

 ∑∑ −==
r kdrkr kdryy dyydSS /)( 2

;
2
;

2      (5.6) 

(When the response probabilities are not all equal, 2
;

2
dryy SS =  is not 

unbiased for the population variance 2
UyS , but this is not an issue for 

the derivations that follow.) We need the covariance 

 )()(1),(),( ;;; drkr drkk
r k

dr yymmd
d

myCovmyCov −−== ∑∑
  

  (5.7) 

and the correlation coefficient, myR ,  = )/(),( mySSmyCov , satisfying 

11 , ≤≤− myR . 

The deviation xBxx )( ;; ′−=∆ dsdrA  is a crucial factor in the bias ratio 

(4.3). We seek an x -vector that makes A∆  large. Computational 
tools to assist this search are expressed in (5.8) to (5.10). Their 
derivation by linear algebra is deferred to Section 7. Their use in 
stepwise and other methods for selecting x-variables is explained in 
Section 6, and empirically illustrated in Sections 9 and 10. We can 
factorize yA S/∆ as 

 mmyyA cvRS ×−=∆ ,/            (5.8) 

Two simple multiplicative factors determine yA S/∆ : The coefficient 

of variation mcv , which is free of ky  and computed from the known 

kx  alone, and the (positive or negative) correlation coefficient myR , . 

Another simple representation of (5.8) is 

 myyA cvRFS ××=∆ x,/            (5.9) 

where 2
,, xx yy RR =  is the coefficient of multiple correlation between 

y  and x ,  2
,xyR  is the proportion of the y -variance 2

yS  explained by 

the predictor x , and x,, / ymy RRF −= . (Formula (7.8) states the 
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precise expression for 2
,xyR .) As Section 7 also shows, x,, ymy RR ≤  for 

any x -vector and y -variable; consequently 11- ≤≤ F . 

In (5.8) and (5.9), mcv  and x,yR  are non-negative terms, while myR ,  

and F  can have either sign (or possibly be zero). Hence 

 mymmyyA cvRFcvRS ××=×=∆ x,,/      (5.10) 

All of yS , mcv , x,yR , myR ,  and F  are easily computed in the survey. 

Both mcv  and x,yR  increase (or possibly stay unchanged) when 

further x-variables are added to the x -vector; myR ,  does not have 

this property. 

 It follows from (5.8) that  myA cvS ≤∆≤ /0  whatever the y -

variable. A shaper inequality is myyA cvRS ×≤∆ x,/ , but it depends 

on the y -variable. Further, if the correlation ratio F  stays roughly 

constant when the x -vector changes, so that 0FF ≈ , then 

myyA cvRFS ××≈∆ x,0/ . 

Although computable for any x -vector and any outcome ),( rs , A∆  

does not reveal the value of the bias ratio. But A∆  suggests 
computational tools, called indicators, for comparing alternative x -
vectors. By (5.8), let 

 0H  = yA S/∆  = mmy cvR ×− ,      (5.11) 

As borne out by theory in Section 8 and by the empirical work in 
Section 9, over a long run of outcomes ),( rs , the average of 0H  

tracks the average deviation  YYCAL −ˆ  (which measures the bias of 

CALŶ ) in a nearly perfect linear manner when the x -vector changes. 
This holds independently of the response distribution that generates 
r from s . Since 0H  can have either sign, it is practical to work with 

its absolute value denoted 1H ; in addition we consider two other 

indicators, 2H  and 3H , inspired by (5.9) to (5.10): 

 1H  = yA S/∆  = mmy cvR ×,    ;    2H  = my cvR ×x,   ;    3H  = mcv    

  (5.12) 
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Our main alternatives are 1H  and 3H  . Of these, 1H  is directly 

linked to A∆ , which we want to maximize, for a given y -variable. 

A strong reason to consider 3H  is its independence of all y -

variables in the survey. The indicator 2H  is an ad hoc alternative; 

although 2H  contains a familiar concept, the multiple correlation 

coefficient x,yR , it is less appropriate than 1H  because the 

correlation coefficient ratio x,, / ymy RRF −= may vary considerably 

from one x -vector to another. Both 2H  and 3H  increase when 
further x-variables are added to the x-vector, something which does 
not hold in general for 1H . The use of these indicators is illustrated 
in the empirical Sections 9 and 10.   
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6 Preference ranking of auxiliary  
vectors 

In a number of countries, the many available administrative 
registers provide a rich source of auxiliary information, particularly 
for surveys on individuals and households. These registers contain 
many potential x-variables from which to choose. Many different x -
vectors can be composed. The indicators in (5.12) provide 
computational tools for obtaining a preference ordering, or a 
ranking, of potential x -vectors, with the objective to reduce as much 
as possible the bias remaining in the calibration estimator. 

Scenario 1: The bias remaining in the calibration estimator depends 
on the y -variable. Some y -variables are more bias prone than 
others. An objective is to identify an x -vector that succeeds in 
reducing the bias for the y -variables deemed to be the most 
important ones in the survey. For the discussion here we assume 
that one important y -variable has been singled out. (If more than 
one y -variable needs to be taken into account, a perhaps not so easy 
compromise must be struck, which suggests Scenario 2 below.) In 
the interest of bias reduction, we use the indicator 1H  = 

mmyyA cvRS ×=∆ ,/  and choose the x -vector to make its value as 

large as possible. An ad hoc alternative is to use the indicator 2H  = 

my cvR ×x, , and strive to make it as large as possible. 

Scenario 2. The objective is to identify a general purpose x -vector, 
efficient for all or most y -variables in the survey. This suggests to 

use 3H  = mcv   as a compromise indicator, and to choose the x -

vector that maximizes 3H . To the same effect, Särndal and 

Lundström (2005, 2008) used the indicator 22
3

2 / PHSm = , motivating 

it by showing that the derived variable value km  given by (2.6) is a 

predictor of the unknown inverse response probability kθ/1 , and 

that choosing the x -vector to make 2
mS  large signals a bias reduction 

in the calibration estimator, irrespective of the y -variable. 

For each scenario we can distinguish two procedures: 
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All vectors procedure: A list of candidate x -vectors is prepared, 
based on appropriate judgment. We compute the chosen indicator 
for every candidate x -vector, and settle for the vector that gives the 
highest indicator value. The resulting x -vector may not be the same 
for 1H  (which targets a specific y -variable) as for 3H  (which seeks 
a compromise for all y -variables in the survey). 

Stepwise procedure: There is a pool of available x-variables. We 
build the x -vector by a stepwise forward (or stepwise backward) 
selection from among the available x-variables, one variable at a 
time, using the successive changes in the value of the chosen 
indicator to signal the inclusion (or exclusion) of a given x-variable 
at a given step. Suppose that we are comparing two x -vectors, k1x  

and k2x , such that k2x  is made up of k1x  and an additional vector 

k+x : ),( 12 ′′′= +kkk xxx . The transition from k1x  to k2x  will 

necessarily increase the value of 2H  and 3H , but that transition 
does not guarantee an increased value for the most appropriate 
indicator, 1H . These matters are illustrated in the empirical Sections 
9 and 10. 
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7 Derivations 
For given y -variable and outcome ),( rs , we seek an x -vector to 

make the computable numerator xBxx )( ;; ′−=∆ dsdrA  in the bias 

ratio (4.3) as large as possible, in absolute value. In this section we 
prove the factorizations =∆ yA S/ mmy cvR ×− , my cvRF ××= x,  in 

(5.8) and (5.9). First we express 2
mcv  as a quadratic form in the vector 

that contrasts the x -mean in the response set  r with the x -mean in 
the sample  s. Define  

 dsdr ;; xxD −=    ;   ∑∑ ′=
r kr kkk dd /xxΣ     (7.1) 

Then, with P given by (2.1),  

 DΣD 1222 −′=×= mm SPcv           (7.2) 

This expression follows from (5.3) and a consequence of (2.3), 
namely,  

 1;
1

;;
1

; =′=′ −−
dsdrdrdr xΣxxΣx           (7.3) 

Next we define the covariance vector as 

 ∑∑ −−=
r kdrr kdrkk dyyd )/()(( )( ;;xxC           (7.4) 

whereby we can write A∆  as a bilinear form: 

 A∆   =  xBD′ CΣD 1−′=              (7.5) 

using that 0)( ;
1

;;;
1 =′−=′ −−

drdsdrdr xΣxxxΣD  by (7.3). 

A useful perspective on A∆  is gained from the geometric 
interpretation of C and D  in (7.5) as vectors in the space whose 
dimension is that of kx . We have 

 2/112/11 )()(Λ CΣCDΣD −− ′′=∆ A        (7.6) 

with 

 2/112/11

1

)()(
Λ

CΣCDΣD
CΣD

−−

−

′′
′

=        (7.7) 
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For a specific y -variable and a specific x -vector, the scalar 

quantities 2/11 )( DΣD −′ and 2/11 )( CΣC −′  represent the respective 
vector lengths of D  and C  (following an orthogonal transformation 

based on the eigenvectors and eigenvalues of 1−Σ ). The scalar 
quantity Λ  represents the cosine of the angle between D  (which is 
independent of  y ) and C (which depends on  y ); hence 1Λ1- ≤≤
. 

When the auxiliary vector kx  is allowed to expand, by adding 

further available x-variables, both vector lengths 2/11 )( DΣD −′  and 
2/11 )( CΣC −′  increase. The angle Λ  will ordinarily change, but if Λ  

stays roughly constant, (7.6) shows that A∆  will increase. 

A second useful perspective on A∆  follows by decomposing the 
total variability of the study variable y , 

∑∑ =−
r ykr drkk Sdyyd 2

; )()( 2 . Two regression fits need to be 

examined, the one of y on the auxiliary vector x , and the one of  y
on the derived variable m defined by (2.6). To each fit corresponds a 
decomposition of 2

yS  into explained y -variation and residual y -

variation. The two explained portions have important links to the 
bias ratio (4.3). Result 7.1 summarizes the two decompositions. 

Result 7.1. For a given survey outcome ),( rs , let D , Σ  and Cbe 

given by (7.1) and (7.4). Then the proportion of the y -variance  2
yS

explained by the regression of y  on x  is 

 212
, /)( yy SR CΣCx

−′=              (7.8) 

The coefficient of correlation between y  and the univariate 
predictor  m  is 

 myR , = ])/[()( 2/111
yS×′′− −− DΣDCΣD      (7.9) 

The proportion of the y -variance 2
yS  explained by the regression of  

y  on m is 

 ])/[()( 21212
, ymy SR ×′′= −− DΣDCΣD      (7.10) 
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The proportions 2
,xyR  and 2

,myR  satisfy 12
,

2
, ≤≤ xymy RR . 

Proof. The proof of (7.8) uses the weighted least squares regression 
of  y  on  x  fitted over  r. The residuals are kk yy )(ˆ x− , where 

xBxx kky ′=)(ˆ  with xB  given by (2.8). The decomposition is 

 ∑∑∑ −+−=−
r kkkr drkkr drkk yydyydyyd 22

;; )ˆ()ˆ()( )()(2 xx  

The mixed term is zero. A development of the term “variation 
explained” gives ∑ −

r drkk yyd 2
; )ˆ( )(x = ∑ −′

r kd CΣC 1)( . Thus the 

proportion of variance explained is  

2
,xyR = 2122

; /])/[()ˆ( )( yr r ykdrkk SSdyyd∑ ∑ −′=− CΣCx  , as claimed in 

(7.8). To show (7.9) we note that the covariance (5.7) can be written 
with the aid of (7.5) as 

 =),( myCov  = PPA // 1CΣD −′−=∆−  

It then follows from (7.2) that myR , = )/(),( mySSmyCov has the 

expression (7.9). The residuals from the regression (with intercept) 
of y  on the univariate explanatory variable m are 

)(ˆ ;;)( drkmdrk mmByy m −+=  with 2/),( mm SmyCovB =  =

)/()( 11 DΣDCΣD −− ′′− P . The proportion of variance explained is 

∑ ∑−
r r ykdrkk Sdyyd m ])/[()ˆ( 22

;)( , which upon development gives 

the expression for 2
,myR  in (7.10). Finally, 2

,
2
, xymy RR ≤  follows from 

the Cauchy-Schwarz inequality for a bilinear form: 

))(()( 1121 CΣCDΣDCΣD −−− ′′≤′ .     

The fact that 12
,

2
, ≤≤ xymy RR  illustrates that, among all predictions 

βxkky ′=ˆ  that are linear in the x -vector, those that maximize the 

variance explained are xBxx kky ′=)(ˆ , so the alternative predictions 

kmy )(ˆ , which are linear in kx  via km , cannot yield a greater 
variance explained than that maximum. 

Now from (7.9), (7.2) and (7.5), =− mmy cvR , yS/
1CΣD −′ = yA S/∆ , as 

claimed by formula (5.8). Moreover, (7.8), (7.9) and (7.7) imply 
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=− x,, / ymy RR Λ , so the correlation coefficient ratio F  in (5.9) equals 

the angle  Λ  defined by (7.7) 
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8 Two remarks 
Two issues are examined in this section. The first concerns the 
relationship between bias and goodness of fit. The second 
establishes the essentially perfect relation existing between the long-

run average of  )~~(ˆ 1
CALEXPA YYN −=∆ −

 
and the bias of  CALY~  or CALŶ . 

The total deviation defined in Section 4 is RAT ∆+∆=∆ , where A∆  

is computable but T∆  and R∆  are not. If computable, 

FULCALR YYN ~~ˆ −=∆  would have been an estimate of the bias of CALY~  

(and of that of CALŶ ). How is “small bias” (a small value of  R∆ ) 

related to the goodness of fit of the model kkky ε+′= xβ ? The 

residuals from that fit determine the value of R∆ dsdrds y ;;; −′= xBx , 

where dr;xB  is given by (2.8). (In this section the more precise 

notation dr;xB  is preferable to the simpler xB  used earlier.) Two 

aspects of the fit of that model are: (i) The computable fit to the data 
),( kky x  observed for rk∈ ; (ii) The hypothetical fit to the data 

),( kky x  for sk∈ , some observed, some not. Let us consider the 
two cases. 

Weighted LSQ fit on the observed data ),( kky x  for rk∈  gives the 

residuals drkkdrk ye ;; xBx′−= , defined and computable for rk∈ , 

with the property  0; =∑r drkked . For rsk −∈ , define 

drkkk yK ;xBx′−= . Although drke ;  and kK  agree in form, different 

notation is required, because, in contrast to drke ; , kK  is not a 

regression residual, is not computable, and has an unknown non-
zero mean ∑∑ −−− =

rs kkrs kdrs dKdK /; . We have 

 drsR KP ;)1( −−−=∆                (8.1) 

The expression (8.1), which may be far from zero, does not depend 
on the residuals drke ; . Regardless of whether the fit is good 

(residuals small; 2
,xyR  near one) or poor (residuals large; 2

,xyR  
near 
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zero), the remaining deviation R∆  is still given by (8.1), and the 

term A∆  remains unchanged at A∆  = dr ;xBD′ CΣD 1−′= . Even if 

the fit is perfect for the respondents, so that 0, =drke  for all rk∈  

and 12
, =xyR , there is no indication that the bias is small. Given the 

respondent data ),( kky x , rk∈ , the remaining deviation R∆  is 
unchanged, given by (8.1). 

A similar inadequacy affects imputation based on the respondent 
data. If the regression imputations drkky ;ˆ xBx′=  are used to fill in 

for the values ky  missing for rsk −∈ , the imputed estimator is 

 ∑∑ −
+=

rs kkr kkimp ydydY ˆˆ  

As is easily verified, CALimp YY ~ˆ = , so impŶ  has the same exposure to 

bias as CALY~ . When the nonresponse causes a skewed selection of y -
values, the imputed values computed from that skewed selection 
will misrepresent the y -values in the sample s or in the whole 
population U . 

(ii) The weighted LSQ regression fit to the data points ),( kky x  for 

sk∈  is hypothetical, because ky  is missing for rsk −∈ . The 
hypothetical regression coefficient vector is 

ks kkks kkds ydd ∑∑ −′= xxxBx
1)(; , and the residuals 

dskkdsk ye ;; xBx′−=   for sk∈  would have the property 

0; =∑s dskk ed . Using that dsr kkk Nmd ;
ˆ/ xx =∑  and  

drdsr kkk Nymd ;;
ˆ/ xBx′=∑ , we have 

 dskr kkR emdN ;)ˆ/1( ∑=∆                        (8.2) 

Suppose the model is “true for the sample s”, with a perfect fit, so 
that 0; =dske  for all sk∈ . Then, by (8.2) we do have 

0)~~(ˆ 1 =−=∆ −
FULCALR YYN . A belief that the bias is small hinges on 

an unverifiable assumption. 
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The second issue concerns the relation between the bias of CALY~  and 

the expected value of the indicator =0H yA S/∆

=−= yCALEXP SNYY ˆ/)~~( mmy cvR ×− , . For fixed y -variable and x -

vector we have 

 0
ˆ/)~(ˆ/)~( HSNYYSNYY yEXPyCAL −−=−  

Let E denote the expectation operator with respect to all outcomes 

),( rs , and denote YYEYbias CALCAL −= )~()~( , 

YYEYbias EXPEXP −= )~()~(  and )ˆ( ySNEC = . Then 

 )()~()~( 0HECYbiasYbias EXPCAL ×−≈       (8.3) 

Here )~( CALYbias  and )( 0HE  depend on the x -vector; )~( EXPYbias  

and C  do not. When the x -vector changes, (8.3) states that 

)~( CALYbias and )( 0HE  are essentially linearly related. If k1x  and k2x  
are two possible x -vectors, the bias differential is proportional to 
the difference in the expected value of 0H : 

 )()()( 2121 )(~)(~ EECYbiasYbias kCALkCAL −− −≈xx  

where )( )(0 iki HEE x=  for 2,1=i . The near-perfect linearity was 
confirmed by the Monte Carlo study in Section 9. 
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9 Empirical validation with a  
 constructed population 
The Monte Carlo study reported in this section was carried out to 
test how well the different indicators succeed in ranking potential x - 
vectors with respect to the amount of bias that they leave remaining 

in the calibration estimator CALŶ . We use a constructed population of 
size 000,6=N with one continuous  y -variable and two continuous 
x-variables. The two x-variables were used to form 16 alternative 
auxiliary x -vectors of the categorical type. We study the indicators 

0H  to 3H  defined in (5.11) and (5.12).  We confirm that, over a long 

run of outcomes ),( rs , the average of 0H  = yA S/∆  mmy cvR ×−= ,

tracks the bias of the calibration estimator, as measured by the 

average of  YYCAL −ˆ , in an essentially perfect linear manner, when 
the x -vector moves through its 16 different formulations. This 
property holds, as it should, for the several response distributions in 
the experiment. We find that 1H  in particular, but 2H  and 3H  also, 

have strong relationship to the bias of  CALŶ . 

For this study we created values )θ,,( kkky x  for 

000,6,...,2,1 == Nk . All 16  x -vectors in the experiment are 

categorical, obtained by grouping the values kx1  and kx2  of two 

generated continuous auxiliary variables, 1x  and 2x . Four different 
response distributions are used, each with response probabilities 

)Pr(θ srkk ∈=  specified for all 6,000 units. We assume kθ  

independent of s. The steps in creating ),,( 21 kkk xxy for 

000,6,...,2,1=k  is described in the appendix at the end. We 
experimented with several populations; the conclusions were 
similar.  

Each of the two x-variables was transformed into four alternative 
group modes, denoted 8G, 4G, 2G and NG, yielding 4 × 4 = 16 
different auxiliary vectors kx . The procedure for the variable 1x  

was: The 6,000 values kx1  were size ordered, and eight equal-sized 
groups were formed. Group 1 consists of the units with the 750 
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largest values kx1 , group 2 consists of the next 750 units in the size 
ordering, and so on, ending with group 8. In this mode 8G of 
variable 1x , unit  k  is assigned the vector value kx )8;( 1

γ , of dimension 

eight with seven entries “0” and a single entry “1” to code the group 
membership of  k. For example, )0,0,0,1,0,0,0,0()8;( 1

′=kxγ  states that 

k is one of the 750 units in size group 5 of the 1x -variable. Next, 
successive group mergers are carried out, so that two adjoining 
groups always define a new group, every time doubling the group 
size and causing loss of information. Thus for mode 4G, the merger 
of groups 1 and 2 puts the units with the 1,500 largest kx1 -values 
into a first new group, the merger of groups 3 and 4 forms the 
second new group of 1,500, and so on, and the vector value 
associated with unit  k is kx )4;( 1

γ . In mode 2G, unit k has the indicator 

vector kx )2;( 1
γ  with value )0,1()2;( 1

′=kxγ  for the 3,000 largest 1x -

value units and )1,0()2;( 1
′=kxγ  for the rest. In the ultimate mode, NG 

(for no grouping), all 6,000 units are put together, all 1x -information 

is relinquished, and 1)1;( 1
=kxγ   for all k.  

The 6,000 values kx2  were transformed by the same procedure into 
the group modes 8G, 4G, 2G and NG. The corresponding 
memberships of unit k is coded by the vectors kx )8;( 2

γ , kx )4;( 2
γ , kx )2;( 2

γ  

and 1)1;( 2
=kxγ . Finally, 4 × 4 = 16 different auxiliary vectors kx  are 

formed by combining the two kinds of group information; the 16 
cells and their notation are shown in the following display. 

Groups based on

kx1  

Groups based on kx2    

Eight Four Two None  

Eight 8G+8G 8G+4G 8G+2G 8G+NG 
Four  4G+8G 4G+4G 4G+2G 4G+NG 
Two 2G+8G 2G+4G 2G+2G 2G+NG 
None NG+8G NG+4G NG+2G NG+NG 

 

The “+” indicates that the kx -vector has the two γ -vectors placed 
side by side, the result being a calibration on the two margins, and 
any interaction effects are relinquished. Thus for the cell 8G+8G, 
unit k has the auxiliary vector value )1()8;()8;( ),(

21 −′′′= kxkxk γγx , where 
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(-1) indicates that one category is excluded in either kx )8;( 1
γ  or kx )8;( 2

γ  

to avoid a singular matrix, giving kx the dimension 8+8-1 = 15. The 
cell 8G+8G has the highest information content. At the other 
extreme, the cell NG+NG disregards all the x-information and 

1=kx  for all  k. There are 14 intermediate cases. For example, the 

cell 4G+2G has )1()2;()4;( ),(
21 −′′′= kxkxk γγx  of dimension 4+2-1 = 5; the 

cell 4G+NG has kxkxk )4;()1()4;( 11
)1,( γγx =′′= −  of dimension 4. (There is 

non-negligible interaction between 1x  and 2x  in this experiment, 
but for simplicity and to avoid small cells we consider only x -
vectors that ignore that interaction.) 

The four response distributions and their response probabilities kθ , 

000,6,...,2,1 == Nk ,  were specified as follows: 

(i) IncExp(10+ 1x + 2x ), with  1 2(10 )θ 1 k kc x x
k e− + += −  where  c  =  

0.04599 
(ii) IncExp(10+ y ), with  (10 )θ 1 kc y

k e− += −  where c = 0.06217 

(iii) DecExp( 1x + 2x ), with  1 2( )θ k kc x x
k e− +=  where  c =  0.01937 

(iv) DecExp( y ) , with   θ kcy
k e−=  where  c  = 0.03534 

The constant c was adjusted in each option to give a mean response 
probability of 70.0/θθ ∑ ==

U kU N . In (i) and (ii), the value 10 

(rather than 0) was used to avoid a high incidence of small response 
probabilities kθ . These four options represent contrasting features 
for the response probabilities: increasing as opposed to decreasing, 
dependent on x-values only as opposed to dependent on y -values 
only. In options (ii) and (iv), the response is entirely y -variable 
dependent, hence “purely non-ignorable”.  

From the constructed population of size 000,6=N  we generated  

J  = 5,000 outcomes ),( rs , where  s of size  n = 1,000 is drawn by 
simple random sampling and, for every given s, a response set  r  is 
realized by each of the four response distributions. For unit k, if 
included in s, a Bernoulli trial was carried out with the specified 
probability kθ  of “success”, which stands for inclusion in the 
response set r. The Bernoulli trials are independent.  
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For each response distribution, for each of the 16 x -vectors, and for 
every outcome ),( rs , we computed the relative deviation 

YYYRD CAL /)ˆ( −= , where CALŶ  is given by (2.4) and ∑= U kyY  is 

the targeted y -total, known in this experimental setting. 

(Alternatively, we used CALY~  given by (2.5) but, as expected, the 

difference in bias compared with CALŶ  is negligible.) We also 

computed the indicators iH ,  3,2,1,0=i , given by (5.11) and (5.12). 
Summary measures were then computed as 

∑
=

==
J

j
jRD

J
RDAvrelbias

1

1)(    ;    ∑
=

=
J

j
iji H

J
HAv

1

1)(   for   

3,2,1,0=i  

where the index j  serves to indicate the computed value for the  

j th outcome, Jj == 000,5,...,2,1 . For each response distribution, 
this gives 16 values for each of the five Av-quantities. The quantity 

)(RDAvrelbias =  is the Monte Carlo measure of the relative bias of 

CALŶ , YYYE CAL /)ˆ( )( − , where expectation is jointly with respect to 
sampling design and response distribution. 

Table 9.1. Relbias in %  and, within parenthesis, the value of 
3

1 10)( ×HAv  for 16 auxiliary vectors  kx .  Response distribution 

IncExp(10+ 1x + 2x ). 

Groups based on 

kx1  

Groups based on kx2    

Eight Four Two None 

Eight 0.2 (101) 0.5 (99) 1.3 (93) 3.4 (76) 
Four 0.5 (98) 0.9 (96) 1.8 (89) 4.1 (70) 
Two 1.5 (91) 1.9 (88) 3.2 (78) 6.5 (52) 
None 4.1 (70) 5.0 (64) 7.3 (46) 13.2 (0) 

 

To illustrate the layout of the experiment, Table 9.1 shows, for 
IncExp(10+ 1x + 2x ),  relbiasin % and 3

1 10)( ×HAv  for the 16 x -

vectors. To save space, we do not show )( 0HAv , )( 2HAv  and

)( 3HAv . For the cell NG+NG, corresponding to the primitive vector 

1=kx , all four Av-quantities are zero, and relbiasis at its highest 
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level. At the opposite extreme, the cell 8G+8G, representing the 
maximum use of auxiliary information, gives the highest value for 
all four Av-quantities, and relbiasis at its smallest value. A 
mathematical property of both )( 2HAv  and )( 3HAv is that their 
value increases in nested transitions, as when we move upwards 
within a column, or from right to left within a row. This experiment 
happened to be one in which relbiasand )( 1HAv  also follow this 
row-wise and column-wise monotonic pattern. More generally, 
however, )( 1HAv can increase or decrease in a comparison of nested 
x -vectors. Not shown are the counterparts of Table 9.1 for the other 
three response distributions. The patterns are similar. 

The summary Tables 9.2 to 9.5 show (i) that )( 1HAv gives a perfect 

ranking of the 16 x -vectors, and (ii) that )( 1HAv  tracks the value of 

relbias linearly. For these data, the ranking obtained by )( 2HAv
and )( 3HAv  is not perfect but nearly so, for these data. We 
computed the Spearman rank correlation coefficient, denoted 
rancor , between relbias and each of the three indicators, based on 
the 16 data points. The bottom line of Tables 9.2 to 9.5 shows that 

1=rancor  for )( 1HAv , and rancor  is close to one for )( 2HAv and 

)( 3HAv . (For Tables 9.4 and 9.5 relbiasis always negative and 
shown in absolute value.) 

A comparison of Tables 9.2 to 9.5 shows that the most powerful of 
the x -vector (cell 8G+8G) leaves a considerably greater bias 
remaining for the y-dependent response distributions,  

IncExp(10+ y ) and DecExp( y ), than for the two depending solely 

on the x-variables. The value of  relbias  for cell 8G+8G is 8.2% in 

Table 9.5 for DecExp( y ), contrasting with only 0.2% in Table 9.2 for 

IncExp(10+ 1x + 2x ). Important, however, is that large bias reduction 
is obtained for the y -dependent cases as well, in the transition from 
the primitive to the best x -vector. 
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Table 9.2. Value, in ascending order, of relbias in %, and 
corresponding value and rank of 3

1 10)( ×HAv , 3
2 10)( ×HAv and 

3
3 10)( ×HAv , for 16 auxiliary vectors. Bottom line: Value of 

Spearman rank correlation, rancor.  Response distribution  
IncExp(10+ 1x + 2x ) 

relbias 3
1 10)( ×HAv  

3
2 10)( ×HAv  

3
3 10)( ×HAv  

0.2 101 (1) 127 (1) 232 (1) 
0.5 99 (2) 119 (2) 225 (2) 
0.5 98 (3) 118 (3) 224 (3) 
0.8 96 (4) 109 (4) 217 (4) 
1.3 93 (5) 109 (5) 216 (5) 

1.5 91 (6) 105 (6) 213 (6) 
1.8 89 (7) 98 (7) 207 (7) 
1.9 88 (8) 94 (8) 205 (8) 
3.2 78 (9) 80 (10) 192 (9) 
3.4 76 (10) 90 (11) 188 (11) 

4.1 70 (11) 84 (9) 190 (10) 
4.1 70 (12) 77 (12) 175 (13) 
5.0 64 (13) 70 (13) 179 (12) 
6.4 52 (14) 52 (14) 146 (15) 
7.3 46 (15) 46 (15) 156 (14) 
13.2 0 (16) 0 (16) 0 (16) 

rancor  -1.00 -0.99 -0.99 
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Table 9.3. Value, in ascending order, of relbias in %, and 
corresponding value and rank of 3

1 10)( ×HAv , 3
2 10)( ×HAv and 

3
3 10)( ×HAv , for 16 auxiliary vectors. Bottom line: Value of 

Spearman rank correlation, rancor.  Response distribution   
IncExp(10+ y ). 

relbias 3
1 10)( ×HAv 3

2 10)( ×HAv  
3

3 10)( ×HAv  

3.6 74 (1) 91 (1) 165 (1) 
3.9 71 (2) 84 (2) 158 (2) 
4.0 71 (3) 83 (3) 156 (3) 
4.3 68 (4) 76 (5) 149 (5) 
4.4 68 (5) 78 (4) 153 (4) 

4.9 64 (6) 68 (7) 142 (7) 
4.9 63 (7) 72 (8) 146 (8) 
5.3 60 (8) 69 (6) 143 (6) 
5.4 60 (9) 64 (9) 137 (9) 
6.0 55 (10) 59 (10) 132 (10) 

6.2 53 (11) 54 (11) 128 (11) 
7.2 46 (12) 54 (12) 122 (12) 
7.9 41 (13) 41 (14) 111 (13) 
7.9 40 (14) 43 (13) 109 (14) 
9.6 27 (15) 27 (15) 90 (15) 
13.1 0 (16) 0 (16) 0 (16) 

rancor -1.00 -0.99  -0.99 
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Table 9.4. Value, in ascending order, of  relbias  in %, and 

corresponding value and rank of 3
1 10)( ×HAv , 3

2 10)( ×HAv and 
3

3 10)( ×HAv , for 16 auxiliary vectors. Bottom line: Value of 
Spearman rank correlation, rancor.  Response distribution   
DecExp( 1x + 2x ) 

relbias 3
1 10)( ×HAv  

3
2 10)( ×HAv  

3
3 10)( ×HAv  

2.7 160 (1) 179 (1) 329 (1) 
3.5 152 (2) 168 (2) 318 (2) 
3.9 148 (3) 160 (3) 300 (5) 
4.7 138 (4) 148 (5) 286 (3) 
4.9 137 (5) 150 (4) 306 (9) 

5.5 130 (6) 138 (6) 267 (4) 
6.4 121 (7) 128 (7) 270 (7) 
6.6 119 (8) 123 (8) 250 (6) 
7.1 113 (9) 119 (9) 291 (8) 
7.6 108 (10) 113 (10) 233 (13) 

8.7 97 (11) 99 (11) 224 (10) 
8.8 95 (12) 97 (12) 211 (11) 
9.1 92 (13) 94 (13) 249 (12) 
11.6 66 (14) 66 (14) 169 (15) 
12.6 55 (15) 55 (15) 182 (14) 
17.7 0 (16) 0 (16) 0 (16) 

rancor  1.00 1.00 0.94 
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Table 9.5. Value, in ascending order, of relbias  in %, and 

corresponding value and rank of 3
1 10)( ×HAv , 3

2 10)( ×HAv and 
3

3 10)( ×HAv , for 16 auxiliary vectors. Bottom line: Value of 
Spearman rank correlation, rancor.  Response distribution   

DecExp( y ) 

relbias 3
1 10)( ×HAv 3

2 10)( ×HAv  
3

3 10)( ×HAv  

8.2 135 (1) 146 (1) 264 (1) 
8.9 128 (2) 135 (2) 250 (2) 
9.0 126 (3) 133 (3) 249 (3) 
9.8 117 (4) 121 (5) 233 (5) 
9.8 117 (5) 123 (4) 237 (4) 

10.5 110 (6) 115 (6) 230 (6) 
10.9 105 (7) 108 (8) 217 (8) 
11.0 105 (8) 110 (7) 224 (7) 
11.5 99 (9) 101 (9) 210 (9) 
12.2 91 (10) 93 (10) 202 (12) 

12.9 83 (11) 84 (12) 187 (10) 
12.9 83 (12) 87 (11) 204 (11) 
14.4 68 (13) 69 (13) 176 (13) 
14.8 63 (14) 63 (14) 162 (14) 
16.8 41 (15) 41 (15) 131 (15) 
20.5 0 (16) 0 (16) 0 (16) 

rancor 1.00 0.99  0.99 

 

An important question not addressed in Tables 9.2 to 9.5 is: How 
often, over a long series of outcomes ),( rs , does a given indicator 

)( kH x succeed in pointing correctly to the preferred x-vector? To 

answer this, let k1x  and k2x  be two vectors selected for comparison. 

If the absolute value of the bias of )(ˆ
1kCALY x is smaller than that of 

)(ˆ
2kCALY x , we would like to see that )()( 12 kk HH xx ≥  holds for a 

vast majority of all outcomes ),( rs , because then the indicator )(⋅H  

delivers with high probability the correct decision to prefer k2x . 

Sample size plays a role in this. Because )( kH x  has sampling 
variability, its success rate (the rate of correct indication) will 
depend on the sample size, and we expect it to increase with sample 
size. 



Empirical validation with a constructed population Design for estimation 

42 Statistics Sweden 

We threw some light on this question by extending the Monte Carlo 
experiment: 5,000 outcomes ),( rs were realized, first with sample 
size 000,1=n , then with sample size 000,2=n . (The response set r 
is realized according to one of the four response distributions, 
declaring unit k “responding” as a result of a Bernoulli trial with the 
specified probability kθ .) We computed the success rate as the 
proportion of all outcomes (s, r) in which the correct indication 
materializes in a confrontation of two specified x -vectors. Several 
pairwise comparisons of this kind were carried out. A few typical 
results are shown in Table 9.6, for the response distribution 
IncExp(10+ 1x + 2x ). The upper entry in a table cell shows the success 
rate in % for 000,1=n , the lower entry shows that rate for 

000,2=n . Shown in parenthesis is the value of relbias for the 
vectors in question. 

“Severe tests” are preferred, that is, confrontations of vectors with a 
small difference in absolute relative bias, because the correct 
decision is then harder to obtain. There is a priori no reason why one 
of the indicators should always outperform the others in this study. 
In the five severe tests in Table 9.6, 1H  has, on the whole, better 

success rates than 2H  and 3H . The success rate of 1H  improves by 
doubling the sample size, and is generally higher when the relative 
bias values are further apart. The case 4G+8G  vs. 8G+8G  compares 
nested x -vectors, so it is known beforehand that 2H  and 3H  give 
perfect success rates. 
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Table 9.6. Selected pairwise comparisons of auxiliary vectors; 
percentage of outcomes with correct indication, for the indicators 1H , 

2H  and 3H . Within parenthesis,  relbias in %. Upper entry: n = 1,000; 

lower entry: n = 2,000. Response distribution IncExp(10+ 1x + 2x ) 

Cells compared Percent outcomes with correct indication 

 
1H 2H 3H  

4G+8G  (0.5)  vs. 
8G+8G  (0.2) 

90.0
96.4

100.0
100.0

100.0 
100.0 

4G+2G (1.8)   vs. 
2G+8G (1.5) 

66.8
74.2

86.0
89.0

70.7 
67.4 

NG+8G (4.1)  vs. 
8G+NG (3.4) 

74.3
82.8

70.3
78.0

45.0 
43.3 

4G+NG (4.1)  vs. 
2G+2G (3.2) 

90.6
97.0

61.4
68.8

83.9 
92.3 

NG+2G (7.3)  vs. 
2G+NG (6.5) 

77.4
85.9

77.4
85.9

34.5 
28.8 
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10 Selection of auxiliary variables  
 in the Swedish pilot survey on  
 gaming and problem gambling 
The experiment with the constructed population in Section 9 
corroborates some of the theory in earlier sections. By construction, 
that population has regularity features ordinarily not present in real 
survey data, which typically contains outliers and other oddities. 
Therefore we selected a set of real survey data to illustrate the use of 
the indicators 1H , 2H  and 3H  in building the x -vector. 

In 2008, The Swedish National Institute of Public Health (Svenska 
Folkhälsoinstitutet) conducted a pilot survey to study the extent of 
gambling participation and the characteristics of persons with 
gambling problems. Sampling and weight calibration was carried 
out by Statistics Sweden. We illustrate the use of the indicators in 
this survey, for which a stratified simple random sample  of n = 
2000 persons was drawn from the Swedish Register of Total 
Population (RTP). The strata were defined by the cross classification 
of region of residence by age group. Each of the six regions was 
defined as a cluster of postal code areas that are similar in regard to 
variables such as education level, purchasing power, type of 
housing, foreign background. The four age groups were defined by 
the brackets 16-24; 25-34; 35-64 and 65-84.  

The overall unweighted response rate was 50.8%. The nonresponse, 
more or less pronounced in the different domains of interest, 
interferes to some degree with the accuracy objective. An extensive 
pool of potential auxiliary variables was available for this survey, 
including variables in the RTP, in the Education Register and a 
subset of those in another Statistics Sweden data base, LISA. For this 
illustration, we prepared a data file consisting of 13 selected 
categorical variables. Twelve of these were designated as x-
variables, and one, the dichotomous variable Employed, played the 
role of the study variable. The values of all variables are available 
for all units sk∈ . Response ),isthat( rk ∈  or not )( rsk −∈  to the 
survey is also indicated in the data file.  

s
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Variables that are continuous by nature were used as grouped; all 12 
x-variables are thus categorical and of the o

kx  type, as defined in 
Section 2. (Because most of the variables are available for the full 
population, they are potentially of the type ∗

kx , but since the effect 

on bias is of little consequence, we used them as o
kx -variables.) 

The value of the study variable, 1=ky  if  k  is employed and 0=ky  

otherwise, is known for sk∈ , so the unbiased estimate FULY~  
defined by (3.2) can be computed and used as a reference. We also 

computed EXPY~  defined by (3.1), as well as CALY~  defined by (2.5) for 
different  x -vectors built by stepwise selection from the pool of 12 x-
variables. The selection was done with each of the indicators 1H , 

2H  and 3H  defined by  (5.12). 

We carried out the forward selection as follows: The auxiliary vector 

in Step 0 is the trivial 1=kx , and the estimator is EXPY~ . In Step 1, the 
indicator value is computed for every one of 12 presumptive 
auxiliary variables; the variable producing the largest value of the 
indicator is selected. In Step 2, the indicator value is computed for 
all 11 vectors of dimension two that contain the variable selected in 
Step 1 and one of the remaining variables. The variable that gives 
the largest value for the indicator is selected in Step 2, and so on, in 
the following steps. A new variable always joins already entered 
variables in the “side-by-side” (or “+”) manner. Interactions are 
thereby relinquished. The order of selection will be different for each 
indicator. 

The values of 2H  and 3H  that identify the next variable for 
inclusion are necessarily increasing in every step. Important to note 
is that this does not hold for 1H . In a certain step j, the x-variable 

with the largest of the computed 1H -values is included, but that 

value can be smaller than the 1H -value that identified the variable 

entering in the preceding step, j - 1. The series of 1H -values for 
inclusion will increase up to a certain step, then begin to decline, as 
Table 10.1 illustrates. 

  



Design for estimation Selection of auxiliary variables 

Statistics Sweden 47 

The unbiased estimate is 4265~ =FULY ; the primitive estimate is 

4719~ =EXPY (both in thousands). This suggests a large positive bias 

in EXPY~ , whose relative deviation (in %) from FULY~  is =RDF

7.1010~/)~~( 2 =×− FULFULEXP YYY . Admitting x-variables one by one 
into the x-vector will successively change this deviation, although 
not always to a smaller value. In each step we computed the 

indicator, CALY~  and =RDF 210~/)~~( ×− FULFULCAL YYY . Tables 10.1 and 

10.3 show step by step results for 1H  and 3H . The number of 
categories is given in parenthesis for each selected variable.  

Table 10.1 shows the stepwise selection with indicator 1H . First to 
enter is the variable Income class; this brings a large reduction in 
RDF from 10.7 to 4.5. The next five selections take place with 
increased 1H -values, and the value of RDF is reduced, but by 
successively smaller amounts. Step six, where Marital status is 
selected, brings about a turning point, indicated by the double line 

in Table 10.1: The value of 1H  then starts to decline, and CALY~ and 

RDF start to increase. At step 6, RDF is at its lowest value, 0.5, then 
starts to rise, illustrating that inclusion of all available x-variables 
may not be best. The turning point of 1H  and the point at which 
RDF is closest to zero happen to agree in this example. This is not 
generally the case. Moreover, in a real survey setting, RDF is 
unknown, as is the step at which RDF is closest to zero. 

Table 10.2 shows the stepwise selection with indicator 3H . Its value 
increases at every step, but at a rate that levels off, and successive 

changes in the estimate CALY~  become negligible. This suggests to 
stop after six steps, at which pointRDF = 2.8. In none of the 12 steps 
does RDF come as close to zero as the value RDF = 0.6 obtained 
with 1H  after six steps. In this respect 1H  is better than 3H , in this 
example. With all 12 x-variables selected, RDF attains the final 
value 2.6. 

The set of the first six variables to enter with 3H  has three in 

common with the corresponding set of six with 1H . There is no 

contradiction in the quite different selection patterns, because 1H  is 
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geared to the specific y -variable Employed, while 3H  is a 
compromise indicator, independent of any y -variable. To save 

space, the step-by-step results for indicator 2H  are not shown. Its 

selection pattern resembles more that of 3H  than that of 1H . Out of 

the first six variables to enter with 2H , four are among the first six 

with 3H . As a general comment, we believe that in many practical 
situations the use of more than six variables is unnecessary, and the 
selection of the first few becomes crucially important. 

Table 10.1. Stepwise forward selection, indicator  1H , dichotomous 

study variable Employed. Successive values of 3
1 10×H ,  of  CALY~  in 

thousands,  and of =RDF 210~/)~~( ×− FULFULCAL YYY .  For comparison, 

471910~ 3 =× −
EXPY ; 426510~ 3 =× −

FULY  

Auxiliary variable entered 3
1 10×H 310~ −×CALY RDF  

Income class (3) 76 4458 4.5 
Education level (3) 107 4350 2.0 
Presence of children  (2) 114 4326 1.4 
Urban centre dwelling (2) 118 4310 1.1 
Sex (2) 123 4296 0.7 

Marital status (2) 125 4286 0.5 
Days unemployed (3) 121 4301 0.9 
Months with sickness benefits (3) 120 4305 1.0 
Level of debt (3) 115 4322 1.3 
Cluster of postal codes (6) 109 4343 1.8 

Country of birth (2) 103 4363 2.3 
Age class (4) 99 4377 2.6 
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Table 10.2. Stepwise forward selection, indicator 3H , dichotomous 

study variable Employed. Successive values of 3
3 10×H ,  of  CALY~  in 

thousands,  of =RDF 210~/)~~( ×− FULFULCAL YYY . For comparison, 

471910~ 3 =× −
EXPY ; 426510~ 3 =× −

FULY  

Auxiliary variable entered 3
3 10×H 310~ ×CALY

 
RDF  

Education level (3) 186 4520 6.0 
Cluster of postcode areas (6) 250 4505 5.6 
Country of birth (2) 281 4498 5.5 
Income class (3) 298 4369 2.4 
Age class (4) 354 4399 3.1 

Sex (2) 364 4384 2.8 
Urban centre dwelling (2) 374 4378 2.6 
Level of debt (3) 381 4364 2.3 
Months with sickness benefits (3) 384 4380 2.7 
Presence of children  (2) 387 4379 2.7 

Marital status (2) 388 4379 2.7 
Days unemployed (3) 388 4377 2.6 
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11 Concluding remarks 
In this article, we discuss a survey situation where alternative 
auxiliary vectors ( x -vectors) can be created and considered for use 
in the calibration estimator CALY

)
 of the population total ∑= U kyY . 

For every specified x -vector, a certain bias remains in CALY
)

. This 
bias is a function of the choice of x -vector. Our analysis is based on 
the bias ratio defined by (4.2) and (4.3). We have shown alternative 
ways, (5.8) to (5.10), to factorize the bias ratio in terms of simple, 
easily interpreted statistical measures. 

To select “the best one” out of a number of available x -vectors, we 
can use the indicator 1H  given by (5.12). If we focus on minimizing 
bias for a fixed study variable ( y -variable), we are led to maximize  

1H . 

However, a typical government survey has many study variables. 
For practical reasons, it may be desirable to use the same x -vector 
for estimating all y -variable totals. A compromise is necessary. We 

have argued that the indicator 3H  in (5.12) is then a suitable one; 
this statistical measure does not depend on any y -data. Better 
indicators for the “many y -variable situation” can perhaps be 
developed; this is a topic for further research. 

Another topic for further work is to examine alternative algorithms 
for stepwise selection of x-variables with the indicator 1H , other 
than the one used in Section 10. 
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Appendix 
Steps in constructing the population of size 6,000 
used in Section 9 
The values ),,( 21 kkk xxy  for 000,6,...,2,1=k  were created in three 
steps as follows: 

Step 1: The continuous auxiliary variable 1x . The 6,000 values kx1  
were created as independent outcomes of the gamma distributed 
random variable ),( baΓ  with parameter values a = 2, b = 5. The 

theoretical mean and variance are 10
1

== baxµ  and 5022
1

== baxσ  

respectively. The mean and variance of the 6,000 realized values kx1  
was 10.0 and 49.9, respectively. 

Step 2: The continuous auxiliary variable 2x . For unit  k, with the 

value kx1  fixed by Step 1, a value kx2  is realized as an outcome of 

the gamma random variable ),( kk BAΓ , with parameters 
22

1212
/)(

kkkk xxxxkA σµ=  and 
kkkk xxxxkB 1212

/2 µσ= , such that  

)( 1112 kkkkxx xhKxBA
kk

++== βαµ ; kkkxx xBA
kk 1

222
12

σσ ==  

with  )3)(()(
11 1111 xkxkkk xxxxh µµ −−=  where 10

1
=xµ  Suitable 

values were assigned to the constants α , β , K  and 2σ . The 

polynomial term )( 1kxhK  gives a mild non-linear appearance to the 

plotted points ),( 12 kk xx . This was done in order to avoid a perfect 

linear relationship between 1x  and 2x . We used 1α = , 1=β , 

001.0=K , 10
1
=xµ  and 2 25σ = . The mean and variance of the 

6,000 realized values kx2  were 11.0 and 210.0, respectively. The 

correlation coefficient between 1x  and 2x , computed on the  6,000 

couples ),( 21 kk xx , was   0.48.  
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Step 3: The continuous study variable y .  For unit  k, with values 

kx1  and kx2  fixed by Steps 1 and 2, a value ky  is realized as an 

outcome of the gamma random variable ),( kk baΓ  with 
2

,
2

, 2121
/)(

kkkkkk xxyxxyka σµ=  and  
kkkkkk xxyxxykb 2121 ,

2
, / µσ= , such that 

kkkkxxy xcxccba
kkk 22110, 21

++==µ   ;    

)( 2211
2
0

22
, 21 kkkkxxy xcxcba

kkk
+== σσ  

It follows that the conditional expectation of ky  given kx1  is 

))(( 112110 kkk xhKxcxcc ++++ βα . We used 0 1c = , 1 0.7c = , 

2 0.3c = and 22
0 =σ . The values of α , β , K  and 2σ are fixed by 

Step 2. The mean and the variance of the 6,000 realized values ky  
were 11.4 and 86.5, respectively. The correlation coefficient between 
y and 1x , computed on the  6,000 couples ),( 1kk xy , was 0.76. The 

correlation coefficient between  y and 2x , computed on the  6,000 

couples ),( 2kk xy , was 0.73. 
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