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Demographic Methods for the Statistical Office Preface 

Preface  
This book combines lecture notes prepared by the author that over 
the years have been used in Statistics Sweden for in-service training 
in demographic methods.  They have also been used on several ICO 
projects as well as in the Demographic Unit in the University of 
Stockholm. The focus is on both practical and theoretical issues. Sev-
eral numerical examples are given. The book is written in a coherent 
language addressing readers with a novice background in demo-
graphy and with only a limited background in mathematical statis-
tics. The book is dedicated to those who are about to begin their ex-
ploratory journey into the world of population statistics.  

The author wishes to acknowledge with gratitude the comments 
from referees and others who have assisted in the project. 
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Summary 
This publication outlines a selection of demographic methods com-
monly used in statistical offices. It covers both elementary and ad-
vanced methodologies. Several numerical illustrations are given. 
Chapter 1 gives a brief historical introduction to demography. It is 
noted that demography is the study of statistics on mortality, fertili-
ty and migration, and that these statistics usually derive from popu-
lation censuses, the vital registration system, special surveys and 
registers. Chapter 2 discusses basic statistical principles such as 
probability, random variables, statistical means and expectations, 
variances and correlation. Then, in chapter 3, the important notion 
of the rate is discussed. Chapter 4 illustrates the use of the Lexis dia-
gram, and how it can be used e.g., to visualize a stationary popula-
tion. Measurement of mortality (the life table) is discussed in chapter 
5.  In support of survey taking, this chapter also discusses the sam-
pling variance of the life expectancy. In addition, it outlines how to 
conduct simple simulations. Stationary and stable populations are 
discussed in chapter 6. Chapter 7 discusses standardization of mor-
tality. Measures of fertility and reproduction are discussed in chap-
ter 8. This chapter also discusses how the variance of the total fertili-
ty rate can be determined by means of simulations or by application 
of a large-sample approximation. Chapter 9 discusses ordinary mi-
gration statistics. Chapter 10 is devoted to population projections 
and illustrates the notion of structural effects. Chapter 11 gives an 
elementary introduction to time-series and forecasting. Chapter 12 
discusses demographic models such as the Brass logit survival and 
the Lee-Carter methods. Indirect demographic estimation tech-
niques are discussed and illustrated in chapter 13. Chapter 14 out-
lines logistic regression. Finally, chapter 15 gives a short introduc-
tion to differentiation and integration.  
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1.0 Introduction 
1.1 John Graunt 
The first scientific study of population took place in England during 
the era of mercantilism, a European 17th century economic doctrine 
primarily concerned with maximizing national wealth. National 
wealth was mainly perceived as bouillon (gold) reserves. Mercantil-
ism involved, among other things, that the nation state should main-
tain trading monopolies, especially with respect to precious metals. 
Mercantilism opposed free trade and advocated high reproduction 
ensuring a steadily growing labor force. 

John Graunt, the founder of population studies, was born on April 
24, 1620. He was a wealthy and influential businessman. He is refe-
renced in Samuel Pepys’ diaries. John Aubrey (who authored sever-
al contemporary bibliographies) was familiar with Graunt and 
wrote his bibliography (Glass in Benjamin, Brass and Glass, 1963, 
pp. 2-37).  

Europe during the 16th and 17th centuries was affected by numerous 
plague epidemics that killed hundreds of thousands of people. Be-
ginning toward the end of the 16th century listings giving the num-
ber of deceased persons in London were issued to the public. These 
were known as the bills of mortality. The bills of mortality, along 
with listings of christenings for a population of about half a million 
London souls, were the main source of Graunt’s research.  

In 1662 John Graunt presented his study to the Royal Society1

                                                      
1 Founded in 1640, it is the oldest continuing scientific society in the world. 

 and 
was immediately elected a member. His study was entitled “Natural 
and Political Observations on the Bills of Mortality”. There is consi-
derable innovation in Graunt’s research (Smith and Keyfitz, 1977, 
pp. 11-21). Despite the fact that his data were no more than rudi-
mentary, he established several demographic regularities e.g., that 
for about every 205 live births 100 are girls and 105 boys. He was 
close to estimating a life table, a considerable feat at that time. He 
established a system for classifying causes of death. Moreover, he 
found a way of correcting birth estimates for underregistration of 
births (see e.g., Brass’ comments in Benjamin, Brass and Glass, 1963, 
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p. 65). John Graunt died a poor man on April 18, 1674. He was bu-
ried under the piewes (alias hoggsties), Aubrey wrote (Glass in Ben-
jamin, Brass and Glass, 1963, p. 6). 

1.2 William Petty 
Sir William Petty (1623-1687) was a close and life-long friend of John 
Graunt’s. His educational background was in medicine but it was 
not in this area that he made his main contributions. While Graunt is 
recognized as the founding father of population studies, Petty 
stands recognized as the founder of political science. Among his 
major works are “A Treatise on Taxes and Contributions” and sev-
eral pioneering essays. He took a great deal of interest in reforming 
education. He worked as a surveyor and drew several maps of Eng-
land and Ireland. In 1650 with the help of John Graunt he became 
professor of music at Gresham College.  

Petty coined the expression “Political Arithmetick” for population 
and economic studies. He was a strong advocate of mercantilism. It 
was not until 1855 that the Frenchman Guillard introduced the de-
signation Demographie (Duncan and Hauser, 1972, p. 158). Petty rec-
ommended that every nation should have a statistical office provid-
ing government with data for intelligent governance. Although the 
beginning of demography is 17th century England, Sweden was the 
first country to implement systematic collection of population data. 
This was accomplished by a royal decree in 1748 which led to the 
creation of a statistical office in Stockholm in 1749. 

Durand (Bogue, 1969, p. 9) in commenting on the work of Petty 
writes:  

“It is remarkable how many questions Petty tackled, with which demo-
graphers and statisticians are still wrestling today, particularly in studies 
of the problems of under-developed countries. Among other things, he was 
concerned with population projections, the economics of urbanization, pop-
ulation structure and the labor force, unemployment and under-
employment, and the measure of national income.” 

Both Graunt and Petty responded to the ideas of their time. There 
was in the first place a strong belief in mercantilism that called for 
government to be knowledgeable about society’s wealth-producing 
capacity. In the second, there was the new outlook that science 
should be based on observations (empiricism). The discoveries of 
Galileo Galilei (1564-1642) in Pisa laid the foundation of modern 
science. Galileo became known as the father of modern observation-
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al astronomy and physics. Galileo was the first to show that heavy 
and light objects are accelerated equally much by gravitation (save 
for air resistance, heavy and light objects fall to the ground equally 
fast). His contributions include the discovery of the four largest sa-
tellites of Jupiter, named the Galilean moons in his honor, and the 
observation and analysis of sunspots. The discoveries of Galileo in-
spired Isaac Newton (1643-1728) to establish the fundamental laws 
of physics. Isaac Newton and Wilhelm von Leibniz (1646-1716) 
created the modern mathematics of the 17th century (integral and 
differential calculus). In addition, as we have seen, the 17th century 
also initiated the pedigree of social science. 

1.3 What is demography? 
Ordinarily one would not explain the meaning of physics or chemi-
stry. We have an adequate understanding of what the physical 
sciences deal with. Demography however spans several areas of 
intertwined academic disciplines. For this reason it is desirable to 
clarify its areas of study. Duncan and Hauser (1972, p. 2) write:  

“Demography is the study of the size, territorial distribution, and composi-
tion of population, changes therein, and the components of such changes, 
which may be identified as natality, mortality, territorial movement (mi-
gration), and social mobility (change of status). Three features of this defi-
nition merit brief explanation. First, the omission of reference to population 
“quality” is deliberate, to avoid bringing normative considerations into 
play. “Population composition” encompasses consideration of variation in 
the characteristics of a population, including not only age, sex, marital 
status, and the like, but also such “qualities” as health, mental capacity, 
and attained skills or qualifications. Second, interest in “social mobility” is 
made explicit because population composition changes through movements 
by individuals from one status to another, e.g., from “single” to “married,” 
as well as through natality, mortality, and migration. Third, the term “ter-
ritorial movement” is preferred to “migration” because the latter ordinarily 
applies to movements from or to arbitrarily defined areal units rather than 
to the totality of movements.”   

In the past, the fundamental materials for demographic studies were 
censuses and vital registration. After World War II, sample surveys 
have been used with increasing success to provide the data for de-
mographic studies. Today, the main bulk of useful and insight pro-
viding demographic data come from surveys. 
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1.4 Thomas Robert Malthus and Karl Marx 
The Reverend Thomas Robert Malthus (1766-1834) is best known for 
his assertion that "the power of population is greater than the power 
in the earth to produce subsistence for man.”  In his “Essay on the 
Principle of Population” published in 1798 he argued that while a 
human population grows geometrically (1, 2, 4, 8, 16, etc), the food 
supply can only grow arithmetically (1, 2, 3, 4, 5, etc). It was his the-
sis that famine, pestilence, misery and vice prevents (check) the hu-
man population from outstripping itself of resources; a population 
will continue to grow until it is miserable enough to stop its growth.  

Malthus advocated moral restraint (birth limitation) through de-
ferred marriage. While, at times, his theories have faded away they 
have always shown a remarkable tendency to reappear. The popula-
tion discussion concerning “run-away population growth” in devel-
oping countries after World War II was greatly inspired by the 
views of Malthus. In contrast, Karl Marx (1818-83) was intensely 
opposed to the Malthusian outlook. The main view in communism 
was that there is no natural population law; poverty comes about 
because of inadequate redistribution of wealth and essential re-
sources. The French demographer Sauvy (1969) has written exten-
sively on general theories of population. It was Sauvy who coined 
the expression the Third World. In recent years serious concern has 
been expressed about the possible environmental degradation that 
the future world population may come to live with. 

1.5 Censuses and vital registration 
Heretofore, the population census has been a principal source of 
information for demographic studies. As a result, the main bulk of 
demographic methods have been designed for use with census da-
ta2

                                                      
2 Census data are often referred to as cross-sectional because they give a snap shot 
of the population at the time of the census.  Population registers, on the other hand, 
often permit longitudinal studies that bring to light time changes in demographic 
variables. 

. While e.g., in the Scandinavian countries traditional population 
censuses have now been replaced by continuous population regis-
ters and demographic databases, globally the population census and 
the vital registration system (supplemented by surveys) remain the 
major sources for population studies.  
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In most parts of the world, vital registration is incomplete and cen-
suses usually suffer from underenumeration and other defects. This 
means that many of the standard methods of demographic estima-
tion that are commonly used in industrialized countries cannot be 
applied successfully to the majority of the world population. During 
the 1960s the British demographer William Brass (1921-99) and his 
associates developed estimation methods for use with deficient and 
incomplete demographic data. These became known as methods of 
indirect demographic estimation3

Censuses are taken for several purposes. At the time of the first cen-
sus in England and Wales in 1801 it was noted by the British parlia-
ment that the census served two objectives. The first was to ascertain 
the number of persons, families and houses and to obtain a broad 
indication of the occupations in which the people were engaged; the 
second was to get information that, in the absence of data from a 
previous [local] enumeration, would enable some view to be formed 
on the question whether the population was increasing or decreas-
ing; -- interest in population growth was and still remains an impor-
tant reason for taking population censuses. Sweden took its first 
census in 1749 and Denmark in 1769. The United States took its first 
census in 1790 and France its first in 1876. The Russian Empire took 
its first and only census in 1897.  

.  

1.6 World population growth and prospects 
During the 20th century the world population reached magnitudes 
never previously attained! About 1900 the world population was 
less than 2 billion. Around 1950 it had approached some 2.6 billion. 
In the year 2010 it is estimated to be about 6.8 billion, and by the 
year 2050 about 9 billion. Nevertheless, historical evidence suggests 
that no population can increase unabated over long periods; sooner 
or later its growth will taper. Such changes in growth behavior have 
been observed on many occasions. 

Associated with the increase in world population is a steadily in-
creasing proportion of elderly people. Around 1950 the proportion 
aged 65 and over in the world population was about 5 percent. By 
2050 it is estimated to have increased to about 15 percent. In Europe 

                                                      
3 Originally, it was perhaps not the intention that these methods should be used for 
many decades. However, because vital registration in many parts of the world 
continues to be too incomplete for demographic estimation, indirect methods are 
used as much today as they were during the 1970s. 
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the percentage aged 65 and over around 1950 was about 8 percent. 
In 2050 it is estimated to have risen to about 30 percent. Alongside 
these changes have been increases in life expectancy, especially in 
industrialized nations. Since the 1950s life expectancies have in-
creased by more than 15 years in the United States and many parts 
of Europe. Nevertheless, in some countries, especially on the African 
continent, increases in longevity have been modest (in large meas-
ure due to malnutrition and the aids/hiv epidemic). The main glob-
al demographic feature during the past decades has been falling 
fertility. Falling fertility is the leading reason for increasing propor-
tions of elderly people. Moreover, in the future the global labor force 
is almost certain to be much older than at the moment because in-
creasingly many people will be working after they have reached 
what we presently determine to be retirement age. 
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2.0 Statistical oncepts C
2.1 Randomness 
Because demography is the statistical study of mortality, fertility, 
marital status and migration (alluding to the aforementioned defini-
tion by Duncan and Hauser) it follows that to undertake demo-
graphic studies one should be familiar with statistical concepts and 
methods. A central concept is randomness. Cramér (1945, pp. 
138-139) writes:   

“It does not seem possible to give a precise definition of what is meant by 
the word “random”. The sense of the word is best conveyed by some exam-
ples. If an ordinary coin is rapidly spun several times, and if we take care to 
keep conditions of the experiment as uniform as possible in all respects, we 
shall find that we are unable to predict whether, in a particular instance, 
the coin will fall “heads” or “tails”. If the first throw has resulted in heads 
and if, in the following throw, we try to give the coin exactly the same ini-
tial state of motion, it will still appear that it is not possible to secure 
another case of heads. Even if we try to build a machine throwing the coin 
with perfect regularity, it is not likely that we shall succeed in predicting 
the results of individual throws. On the contrary, the result of the experi-
ment will always fluctuate in an uncontrollable way from one instance to 
another. At first, this may seem rather difficult to explain. If we accept a 
deterministic point of view, we must maintain that the result of each throw 
is uniquely determined by the initial state of motion of the coin (external 
conditions, such as air resistance and physical properties of the table, being 
regarded as fixed). Thus, it would seem theoretically possible to make an 
exact prediction, as soon as the initial state is known, and to produce any 
desired result by starting from an appropriate initial state. A moment’s 
reflection will, however, show that even extremely small changes in the 
initial state of motion must be expected to have a dominating influence on 
the result. In practice, the initial state will never be exactly known, but 
only to a certain approximation. Similarly, when we try to establish a per-
fect uniformity of initial states during the course of a sequence of throws, 
we shall never be able to exclude small variations, the magnitude of which 
depends on the precision of the mechanism used for making the throws. 
Between the limits determined by the closeness of the approximation, there 
will always be room for various initial states, leading to both the possible 
final results of heads and tails, and thus an exact prediction will always be 
practically impossible.” 
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If “something” is random, this “something”, by definition, cannot be 
predicted with certainty. Hardly any demographic event can be 
predicted with certainty; following marriage, we expect the birth of 
a child, yet we cannot be certain that a married couple will have 
children. If they do have children, we cannot, in advance, tell how 
they will fare in life, and so on.  

2.2 Probability 
Imagine a coin that can be tossed a large number of times without 
damaging its physical constitution. The outcome of tossing the coin 
is either heads or tails. While it is impossible for us to predict with 
certainty the outcome of any particular toss, we feel confident in 
arguing that for a large number of tosses about half will yield heads. 
In fact, intuition tells us that for e.g., a million tosses, the ratio p = 
f/1,000,000 where f is the corresponding number of heads, for prac-
tical purposes, will be the same as the corresponding ratio resulting 
from 2,000,000 tosses (in both cases, we would expect p ≈ 0.5).  

Table. 2.1. Frequency of boy and girl births in Poland, 1927-32 

Year Boys Girls Both sexes Proportions 

    Boys Girls 

1927 496,544 462,189 958,733 0.518 0.482 
1928 513,654 477,339 990,993 0.518 0.482 
1929 514,765 479,336 994,101 0.518 0.482 
1930 528,072 494,739 1,022,811 0.516 0.484 
1931 496,986 467,587 964,573 0.515 0.485 
1932 482,431 452,232 934,663 0.516 0.484 

Source: Fisz, 1963, p. 4. 
 

Stated otherwise, intuitively, if N is the number of tosses and f is the 
number of heads, the ratio p = f/N will approach a constant when N 
increases. We call this hypothetical constant the probability of the 
coin showing heads in a toss. We speak of the stability of relative fre-
quencies, a notion upheld by empirical experience. 

A perfect coin, that is, a coin where it is as likely that it shows heads 
as tails when tossed is called a symmetrical coin. In reality, no such 
coin exists. However, in the real world there are coins that are nearly 
symmetrical. Now, whether a coin is symmetrical or not, we can 
imagine that it has attributed to it a number p, 1p0 ≤≤ , where p is 
the theoretical probability that the coin will yield heads in a toss. 
Notice that here p is an unobservable or abstract attribute of the 
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coin; for we can never establish with total accuracy what the value 
of p is. We can, however, toss the coin a large number of times and 
use the relative frequency of heads as an approximation to p. These 
arguments provide us with an intuitive understanding of what 
probability is. 

If nature did not uphold the principle of probability, probability 
calculus would remain an abstract mathematical exercise (likely, it 
would not even exist). The whole point is that nature, in fact, very 
much upholds the notion of probability (probabilities are not

2.3 Random experiments 

 chao-
tic). As an example, consider table 2.1 showing the numbers of boy 
and girl births in Poland between 1927 and 1932. It will be seen that 
the proportions of boys and girls remain virtually constant (the sex 
ratio at birth is known as a demographically invariant entity). 
Hence, we can argue that a non-interrupted pregnancy results in a 
live born boy with probability 0.52, and a live born girl with proba-
bility 0.48. Sex ratios at birth for other countries and periods are vir-
tually the same. The constancy of the sex ratio at birth is an example 
of demographic regularity. Graunt observed this and other regularities 
using data on christenings for London during the early 17th century. 

A random experiment, by definition, is an experiment that can be 
conducted a large number of times under the same conditions. 
Hence, tossing a die and observing the outcome is a random expe-
riment. One may object that nothing in this world can be repeated 
under the exact same circumstances. After all, the second time the 
die is cast, its molecular constitution, as well as other physical cha-
racteristics, have changed for which reason the probabilistic me-
chanisms underlying its outcomes also have changed. Here the an-
swer is that these changes are so minuscule that they evade numeri-
cal measurement and, consequently, are of no practical importance. 
The long and the short of it is that mathematical definitions are ab-
stract; in the real world we deal with approximations. What we take 
interest in is not total precision (which can never be obtained) but 
adequate

A realization of a random experiment (such as tossing a coin) is 
called a trial. The outcome of a random experiment or trial is called 
an event. It is typical of a random experiment E that it may result in 
individual events 

 precision which can usually be attained from a practical 
point of view. Penrose (2005) discusses this issue in more detail. 

ne,...,2e,1e . These are called elementary events. 
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2.4 The concept of statistical distribution 
Consider a random experiment E with elementary events 

ne,...,2e,1e . Let kp be the probability that the event ke , k = 1, … , n, 

occurs when E is performed. We say that np,...,2p,1p is the probabil-

ity distribution for E. The probabilities kp
 
share the property that 

1kp0 ≤≤  and that 

∑
=

n

1k kp = 1.  

As an example, consider the random experiment of throwing a die. 
The die may show 1, 2, … , 6 dots. Hence, the numbers 1, 2, … , 6 are 
elementary events. If the die is symmetrical, that is, if any event is as 
likely as any other, then the probability of each event is kp  = 1/6. 

Notice that when we throw the die, it is a certain event that either 
we get one, two, three, four, five or six dots. Hence, probabilities 
across all elementary events sum to unity.  

In passing, we introduce the notion of a random variable. Let X be 
the number of dots resulting from throwing the die4

nx,...,1x

. Because X 
takes on its values randomly, we say that X is a random variable. We 
can now write P{X=k} = 1/6 for k = 1, … , 6. When events do not 
influence one another we speak of independent events. For example, 
in an experiment where a die and a coin are tossed the correspond-
ing outcomes are independent. When we speak of independent ob-
servations 

 
it is understood that no observation can influ-

ence the value of another. For example, if every observation were 
proportional to the preceding one, then the observations would not

2.5 The mean value of a random variable 

 
be independent.  

The mean value of a discrete random variable X, which can take on 
values nx,...,1x , with probability distribution np,...,1p  is defined as 

∑
=

==
n

1k kp kxμE(X)  (2.1) 

                                                      
4 Mathematically, X is a map from the set of dots on the die {1, … , 6 dots} to the set 
of integers {1, … , 6}.  
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As an example, let X be the random variable corresponding to the 
experiment of throwing a die. If all events 1, … , 6 are equally likely, 
the mean value of X is 

∑
=

==
6

1k 6
1k μ(X) E  = 3.5 

We also refer to (2.1) as the expected value of the random variable X. 
The mean or expected value of a random variable is so important 
that it is in place to discuss it in more detail.  

Consider a game where a die is thrown and you get as many dollars 
as the number of resulting dots; if the throw results in five dots, you 
get five dollars. The die is tossed and we ask, how many dollars do 
you expect to receive? The answer is $ 3.5. How did we arrive at that 
result? Perhaps by saying that you can get either one, two, three, 
four, five or six dots when the die is thrown and that each outcome 
(event) is equally likely. In other words, on average, you expect to 

receive 6)5432(1
6
1

+++++  = 3.5 dollars. This, indeed, is the ex-

pected value calculated in agreement with (2.1).  

If we ask how many out of 635 newborns are expected to die during 
infancy, given that the probability of infant death is 0.035, the an-
swer is 0.035 x 635 = 22 infants. A coin is tossed 737 times. How 
many heads do you expect? Answer: 0.5 x 737 = 369. Stated other-
wise, expectations are often found by simple multiplication. What 
may seem peculiar is that the expected value often is such that it 
does not match any particular outcome. For example, you throw a 
die and calculate the expectation to be 3.5. Yet, no outcome gives 
this number of dots. Moreover, individual outcomes may vary a 
great deal from their expectation. To better understand this feature, 
we now introduce the notion of the variance of a random variable. 

2.6 The variance of a random variable 
The variance of a discrete random variable X, which can take on 
values nx,...,1x , with probability distribution np,...,1p , is defined as 

∑
=

−===
n

1k kp 2μ)k(x2μ)-(X E2σ (X)Var  (2.2) 
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Notice that the variance of a random variable is the expectation of its 
squared deviation from its mean. The square root of the variance is 
called the standard deviation. Hence, the standard deviation of X is 

∑
=

−==
n

1k kp 2μ)k(xσ sd(X)  (2.3) 

Given observations nx,...,2x,1x , the mean of their distribution is 

estimated as 

∑
=

=
n

1k kx
n
1μ̂  (2.4) 

that is, as a straightforward average of the observations. The va-
riance of their distribution is estimated as 

∑
=

−=
n

1k
 2)μ̂k(x

1-n
12σ̂  (2.5) 

Occasionally, we write 

∑
=

−=
n

1k
 2)μ̂k(x

n
12σ̂  

for the estimated variance. For large n, the two estimates of the va-
riance are the same. 

2.7 Covariance and correlation 
Let X and Y be two random variables with means xm and ,ym  re-

spectively. The expected value 

Cov(X, Y) = E [ )ym(Y )xm(X −− ] (2.6) 

is called the covariance of X and Y. From this definition, we can infer 
that a positive covariance means that when X is above its mean val-
ue then, likely, Y is also above its mean value. Similarly, if X is be-
low its mean value then, likely, Y is also below its mean value. If the 
covariance is negative then there is a tendency for Y to be smaller 
than its mean value when X is higher than its mean value or, alter-
natively, when X is below its mean value then Y is likely to be above 
its mean value.  
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A more convenient measure is the covariance between X and Y fol-
lowing standardization. To standardize a random variable, we sub-
tract its mean and divide by its standard deviation. Hence 

x)/σxm(Xu −=  where xσ is the standard deviation of X is the stan-

dardization of X. Similarly, y)/σym(Yv −=  is the standardization of 

Y. The expectation  













 −−
=

yσxσ

)ym(Y )xm(X
 EY)ρ(X, = E(u v) (2.7) 

is called the correlation between X and Y. The correlation is always 
such that 1ρ1 ≤≤− . Given paired observations )ny,n(x),...,1y,1(x , 

the estimated correlation is 

yσ̂xσ̂

n

1i
)ym̂i(y )xm̂i(x 

n
1

   y)(x,r 
∑
=

−−

=  (2.8) 

Table 2.2 shows ten hypothetical observations on two related ran-
dom variables X and Y. The estimated means are xm̂ = 5.57 and 

ym̂ = 6.91. The products )ym̂i(y )xm̂-i(x −  are calculated. The sum 

of the products divided by the number of observations is 

∑
=

−−
10

1i
6.91)i(y 5.57)i(x

10
1

 = 8.58. The estimated standard devia-

tions are xσ̂ = 2.854 and yσ̂  = 3.516. Using (2.8), we find that the 

estimated correlation between X and Y is r = 0.85. 

In practice, we do not calculate means, variances and the like ma-
nually. These are tasks that we delegate to statistical software pack-
ages. Nevertheless, it is instructive to carry out the calculations ma-
nually because it gives us a much better understanding of the me-
chanisms involved than by pushing buttons on a panel. 

About correlations, Bernard Shaw wrote (Hald, 1962, p. 21):  

“… it is easy to prove that the wearing of tall hats and the carrying of um-
brellas enlarges the chest, prolongs life, and confers comparative immunity 
from disease; for the statistics shew that the classes which use these articles 
are bigger, healthier, and live longer than the class which never dreams of 
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possessing such things. It does not take much perspicacity to see what real-
ly makes this difference is not the tall hat and the umbrella, but the wealth 
and nourishment of which they are evidence, and that a gold watch or 
membership of a club in Pall Mall might be proved in the same way to have 
the like sovereign virtues.” 

 

Table 2.2. Covariance and correlation calculation 

i 
ix  iy  ( ix -5.57)( iy -6.91) 

1 1.10 1.40 24.630 
2 2.30 2.20 15.402 
3 3.10 4.60 5.706 
4 4.60 5.60 1.271 
5 5.50 7.00 -0.006 
6 6.20 8.10 0.750 
7 6.90 11.00 5.440 
8 7.00 7.20 0.415 
9 9.00 11.00 14.029 
10 10.00 11.00 18.119 

    Means 5.57 6.91 8.58 
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Fig. 2.1 shows Y plotted as a function of X. We see that as X increas-
es so does Y, but only in the sense of an average or trend.  

xσ̂  = 2.854 

yσ̂ = 3.516  

3.516 x 2.854
8.58r =  = 0.85. 

 
When the correlation between two variables is r = ±1, the two va-
riables are tied to one another in a perfect linear relationship. The 
correlation between X and X (that is, with itself) is r = 1. The correla-
tion between X and –X is r = –1. This is easily verified by replacing 

ymY − by ± )xm(X −  in (2.7). 

2.8 Probability theory, random experiments and 
hidden variables 
Textbooks on probability theory usually discuss random experi-
ments by alluding to the toss of a coin or a die. To the social science 
student these examples often appear puerile; after all, social science 
is hardly the question of tossing a coin or throwing a die. In science 
the data we deal with derive from the both enigmatic and complex 
mechanisms that make up nature. Certainly, whether a girl baby just 

0,0
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Fig. 2.1. Relationship between variables x and y
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born eventually shall reach adulthood, marry and have three child-
ren, of which one is a girl, is a process (biological, sociological, psy-
chological, etc) the complexities of which are far beyond that of 
throwing a die or a coin.  

Albert Einstein (1879-1955) said that “God does not play dice”. To Eins-
tein, nature was deterministic in the sense that when we fail to make 
perfect predictions it is because of the existence of hidden variables 
over which we have no control.  

In social science, the general belief has always been, I believe, that if 
only we know more then we can make safer predictions. This how-
ever is a belief that often stands contradicted by empirical evidence. 
For example, consider two coin-tossing experiments where (i) the 
coin is dropped from a height of one meter and (ii) the coin is 
dropped from a height of two meters. If the two experiments are 
carried out with similar coins, the two resulting observation series 
become statistically indistinguishable. In fact, we get two series of 
independent binomially distributed observations with the same 
probability of success. From these experiments we would conclude 
that knowing the height of the experiment does not improve the 
certainty with which we predict the next outcome of tossing a coin. 
If rather than letting height vary between the two experiments we 
let air temperature vary, the same result would be obtained, that is, 
knowing the air temperature does not improve the certainty with 
which we predict the next outcome of the experiment.  Continuing 
in this manner using many different variables that can be measured 
accurately, we would find that even if, in a sense, they are associated 
with the experiments, they are of no use for improving the certainty 
of the predictions. In the case of coin tossing the variables that steer 
the outcome do not seem possible to find; they are hidden to us. 
When population forecasts fail (which they do most of the time, es-
pecially in the long run!), it is because we have incomplete under-
standing of the processes that underlie the temporal unfolding of the 
population (failure in finding the hidden variables).  
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3.0 The Rate 
3.1 The meaning of a rate 
The rate is a concept closely linked to time. A simple example may 
illustrate this. If it is known that the rate for staying in a hotel is $ 
100 per night, then having spent one night in the hotel, room 
charges are $ 100. Having spent two nights charges are $ 200. Stated 
otherwise, for every 24 hours spent in the hotel, the guest pays $ 100. 
If the hotel is fair to a customer who has stayed in the hotel for 58 
hours, it would charge 58/24 times one hundred dollars =  $ 242. 

If rather than speaking of time spent in the hotel, we speak of expo-
sure time (exposure to paying $ 100 for every 24 hours spent in the 
hotel), we have that room charge is exposure time multiplied by 
hotel rate. This is a simple enough explanation of what we mean by 
rate. To be more specific, let us narrow down what we mean by ex-
posure time. To this end let us also introduce the notion of observa-
tion plan

Consider an observation plan where we study the survival of ten 
newborns, born at the same time, during their first year of life. After 
a year of observation, we note that nine children survived and that 
one died exactly one week after it was born. The total exposure time 
lived by the nine surviving newborns during the period of observa-
tion is 9 years. The time lived by the infant that died is 1/52 of a 
year or 0.019 year. The total exposure time, therefore, is 9.019 years. 
We now reason that it required 9.019 years to bring about one infant 
death for which reason we expect 1/9.019 = 0.1109 deaths per year 
of exposure during infancy. If we formalize this reasoning, we arrive 
at the following definition of a rate: A rate is the number of events 
divided by the amount of exposure time that yielded the events (the 
speed with which the events took place). Therefore, if subject to an 
observation plan we study an event A and this occurs D times dur-
ing the observation plan while, at the same time, an exposure R is 
consumed, then  

. Clearly, to make observations we must have a plan that 
stipulates how this is accomplished.  

R
Dμ =  (3.1) 

is the rate for the occurrence of the event A. Notice that this yields 
that  
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Rμ D =   (3.2) 

so that the number of events we expect to occur given an exposure R 
is D. We can use (3.2) to help us calculate the room charges men-
tioned above. If charges are $ 100 per 24 hours, then room charges 
are $ 4.17 per hour. Having spent 58 hours in the hotel, D = 4.17 
times 58 = $ 242 would be the total charges. 

3.2 The relationship between rate and probability 
Consider a longitudinal observation plan whereby we follow 1,000 
newborns during infancy, that is, for a period of one year. At the 
end of the observation plan we note that 970 babies survived to age 
one and that 30 died during infancy. For simplicity, assume that the 
30 newborns who died lived for half a week on the average. This 
means that the exposure time consumed by the newborns who died 

is 
52
1

2
130  = 0.29 years. The total exposure time therefore is 970.29 

years. The infant mortality rate is estimated as  

0.031
970.29

30μ̂ ==  (3.3) 

On the other hand, out of 1,000 newborns 30 of them died during 
infancy so that the probability of dying during infancy is estimated 
as  

0.030
1,000

30q̂ ==  (3.4) 

These two estimates are nearly the same, but they are not identical; 
for in the case of the rate (3.3) the denominator is 970.29 while in the 
case of the probability (3.4) the denominator is 1,000.  

It is important to give some thought to the assumptions that under-
lie estimation of the infant mortality rate (3.3) and the probability of 
death (3.4). Remember that when we discussed random experi-
ments, we argued that the probability of an event happening should 
remain the same during the trials. The same applies to (3.4). If we 
wish to estimate the probability of death during infancy for the 1,000 
children under observation it is implicit that we assume that all 
children share the same theoretical or underlying probability of 
death during infancy (it is this unobservable probability we wish to 
estimate). The same applies to (3.3). When we estimate a rate of in-
fant death, we assume that all the children under observation share 
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the same theoretical or underlying rate. When a rate stays constant 
on an age interval, we say that it is piecewise constant

It can be shown that when the rate of infant mortality is constant 
(constant across the first year of life), the corresponding probability 
of infant death is 

. 

μe1q −−=  (3.5) 

Notice that power series expansion implies that q ≈ /22μμ − ≈ µ for 

small µ. If in (3.5) we let 0.030919
970.29

30μ ==  then q = 0.030 (disre-

garding rounding).  We shall justify the formula (3.5) later on. 

3.3 Standard terminology and notation 
In demography, a probability such as q in (3.4) is called a mortality 
rate. In actuarial literature5, the rate in (3.3) is usually called a central 
death rate, age-specific mortality rate, mortality intensity or hazard6

R̂/D̂μ̂ =

. 
Terminologies vary between authors. For the most part, we shall call 
q in (3.4) a mortality rate (although it is a conditional probability) 
and we shall call µ a central death rate. In addition, it should be 
noted that it is wise to distinguish between theoretical quantities 
and estimated ones. In a concrete situation of estimation, we may 

write  for the estimated rate and D/Rμ = for the theoretical 
or underlying one. It is true that this may seem somewhat pedantic 
and, all authors do not make this distinction. It should also be men-
tioned that in demographic literature the expression person-years 
means exposure time.  

3.4 Crude birth and death rates, and the rate of 
natural growth 
The crude birth rate is defined as the total number of live births that 
have occurred during a calendar year divided by the midyear popu-
lation for this calendar year. The midyear population is the popula-
tion as of July 1 (hypothetically). Similarly, the crude death rate is 
defined as the total number of deaths that have occurred during a 
calendar year divided by the midyear population. Both crude rates, 
                                                      
5 Actuarial literature addresses analysis of mortality in the context of life insurance 
and other kinds of insurance. 
6 It is also known as the force of mortality. 
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it will be noted, are calculated for both sexes. When we speak of the 
midyear population, we refer to the resident population at the mid-
dle of the year. This population times one year is an approximation 
to the person-years (exposure time) associated with the total number 
of births and deaths. Hence, the crude birth rate is 

P
BCBR =  (3.6) 

where B is the total number of births that took place during a calen-
dar year and P is the corresponding midyear population. The crude 
death rate is 

P
DCDR =  (3.7) 

where D is the total number of deaths that occurred during a calen-
dar year and P is the corresponding midyear population. Usually 
the crude birth and death rates are given per 1,000 population. 

The difference between the crude birth rate and the crude death rate 
is the natural rate of population growth, which is often denoted by r, 
hence 

r = CBR-CDR (3.8) 

3.5 Rate of attrition and longevity 
If it is meaningful to attribute a “rate of attrition” to an object then it 
is also meaningful to attribute to it the notion of longevity. Consider 
a bottle that contains one liter of water. We are told that the water is 
tapped at a rate of one tenth of a liter per hour. We ask: When is the 
bottle empty? The answer is simple enough, after ten hours. Hence, 
it would appear that the longevity of the bottle is one divided by the 
rate of water use. This, in fact, is correct. To follow up on this rea-
soning, let us agree that when water is tapped from the bottle at a 
certain rate per hour, then it is reasonable to refer to the rate as a 
“rate of attrition”.  

Consider an object the rate of attrition of which is a constant m (in-
dependent of time). The expected time T required for the object to 
have been completely destroyed is m T = 1. Hence, T = 1/m is the 
life expectancy or lifetime of the object. In (3.3) we estimated an in-
fant mortality rate at μ̂ = 0.031. If this mortality rate were to apply 
throughout the life of the child, the child’s life expectancy would be 

0e = 32.3 years. 



Demographic Methods for the Statistical Office The Rate 

Statistics Sweden 31 

As an aside, rate is a word that evidently only exists in English. As 
noted, it is a measure of change, specifically a measure of how fast 
something changes with time. In French, Spanish, German, Arabic 
and the Scandinavian languages there is no exact word for rate. In 
French demographic literature, a rate is usually defined as the ratio 
or quotient between two numbers. In demographic literature it is 
often explained how the rate is calculated but not what is its deeper 
semantic meaning (it is left for the reader to understand this). In the 
long run however, it is far more insight inducing to work with defi-
nitions that not only explain how something is calculated but also 
why it is calculated (its rationale). Alas, as is always the case, there 
are exceptions to be caught. As we shall see, the total fertility rate 
(the number of children a woman is expected to have if she survives 
through the reproductive ages and has specified age-specific fertili-
ty) is not a rate in the sense discussed in this chapter. 
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4.0 The Lexis Diagram 
4.1 Its origin 
The Lexis diagram is a grid of lines used to illustrate a flow of de-
mographic events. This way of graphically portraying demographic 
events is often attributed to the German economist and statistician 
Wilhelm Lexis (1837-1914). Lexis made several important contribu-
tions to statistics. He was one of the first to work with time-series. In 
addition, he was the director of the first actuarial institute in Ger-
many. Two other contemporary German statisticians or economists, 
Becker and Zeuner, as far as can be gathered, were the main inven-
tors of the diagram to be discussed below. The reason why the dia-
gram is named the Lexis diagram is that it was Wilhelm Lexis who 
introduced it in his correspondence with American colleagues. It 
was in the United States that the diagram received its name. Here 
we use the Lexis diagram as an illustration of infant mortality and 
the stationary population.  

4.2 Infant and child mortality 
Table 4.1 gives hypothetical data for estimating infant mortality. The 
data is illustrated by the Lexis diagram in fig. 4.1. For example, no-
tice that of the 998 births that took place in 1970, 18 infants died dur-
ing this year (1970), and 8 died during the following year (1971). 
When statistics show how many children died the same year they 
were born and how many died during the following year, we speak 
of double-classification (this is particularly the case in French litera-
ture). In the case of double-classification two different kinds of esti-
mates can be obtained, namely period and cohort7

Table 4.1 also tells us how many children died during the calendar 
years. For example, in 1970 the total number of infants dying was 24. 
The most common definition of infant mortality is  

 estimates. 

yearcalendar  during births ofnumber 
yearcalendar  during deathsinfant  ofnumber IMR =  

which is known as the infant mortality rate (usually abbreviated 
IMR). Fig. 4.1 illustrates these figures. An advantage of the diagram 

                                                      
7 A cohort is the same as a generation. 
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is that it clearly shows that infant deaths among a birth cohort fall 
partly in the cohort year, partly during the following year. 

Table 4.1. Infant mortality by double-classification. 

Calendar 
year 

Total  
births 

during 
year 

Died 
during 
same 
year 

Died 
during 

following 
year 

Total 
deaths 
during 

year 

Total 
deaths 

in  
cohort 

IMR Cohort 
estimate 

1970 998 18 8 24 26 0.024 0.026 
1971 1,022 22 9 30 31 0.029 0.030 
1972 1,007 25 10 34 35 0.034 0.035 
1973 893 21 na 31 na 0.035 na 

 

Fig. 4.1. Lexis diagram illustrating estimation of infant mortality 
 

 

 

 
 

 

  
 

 

Births 998 1,022 1,007 893 

Year 1970 1971 1972 1973 

 

In statistical publications infant mortality is usually given as IMR, 
that is, as the number of infants dying during a calendar year di-
vided by the total number of live births during the same calendar 
year. This is a simple estimation procedure, indeed often the only 
one that can be attempted. 

When deaths are given both by year of birth of the deceased and by 
calendar year (double classification), it is possible to get cohort esti-
mates.  

Consider the 998 children born in 1970. We notice that 18 of those 
died in 1970 and 8 in 1971. Hence, for this birth cohort infant mortal-

ity was 
998
26

0q̂1970 = = 0.026. This estimate is slightly different from 
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998
24RM̂I 1970 = = 0.024. Notice that while 1970

0q̂  is a cohort estimate in 

that it builds on children born during 1970 and how many of them 
died within one year of life, this is not true of 1970RM̂I  which blends 
the deaths from two different birth cohorts, namely the 1969 and 
1970 birth cohorts. In that sense, 1970RM̂I  is a composite statistic8

If every calendar year the same number of children is born and if 
infant mortality 

.  

0q  stays the same over time, IMR would be the 

same as 0q . In reality, both fertility and mortality change from year 

to year, hence we shall never expect IMR to be the same as 0q  (as 

estimated from a cohort experience). 

Excellent illustrations of the Lexis diagram are found in “Demo-
graphic Analysis” by the French demographer Roland Pressat. The 
original French version dates back to 1961. For many years, it was 
considered required reading for every novice student of demogra-
phy. Because of its elementary and highly non-mathematical ap-
proach to explaining demographic methods, it fell in the shadow of 
more mathematically oriented literature. Nevertheless, even today it 
remains one of few practical textbooks on demographic techniques, 
especially for staff in statistical offices. As a novice student of demo-
graphy, one should consult this textbook which is surprisingly rich 
in demographic insight. Another recommended textbook on demo-
graphy is Spiegelman (1980).  

We shall return to a discussion of the stationary population and 
show that it is a special case of what is known as a stable population, 
a concept widely used in demographic analysis. We shall also return 
for a discussion of the stationary population and show that its crude 
birth and death rates are the inverse of its life expectancy. 

Fig. 4.3 illustrates a hypothetical situation where each year B child-
ren are born. A census is taken in year 0 on December 31. The popu-
lation aged between 0 and 1 at the end of year 0 is not B because 
during year 0 some of the children died. Instead, we count P(0) B 
surviving children aged between 0 and 1 where P(0) is a fraction, 

1(0) P0 << .  

 

                                                      
8 A statistic is a function of observations. The mean, for example, is a statistic.  
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4.3 The Lexis diagram and the stationary popula-
tion 

       Age  

   

 

   4  

       3 P(3)B 

    

 

  2 P(2)B 

     

  

1 P(1)B 

       0 P(0))B 

6 5 4 3 2 1 0   

B B B B B B B   

 

If the children are born uniformly during the year then we may ex-
pect the children aged between 0 and 1 year to be half a year old, on 
the average. Similarly, we find that in year 0 the expected popula-
tion aged between 1 and 2 years is a fraction P(1) times B, and that 
they are 1.5 years old on the average. We can continue in this fa-
shion as long as we find survivors born in the past. Suppose that the 
mortality of the population is such that ω is an age with the property 
that while there are survivors between ages ω and ω+1, there are no 
survivors at or above age ω+1. Denoting the population aged ω by 
P(ω) B, the total expected population is 

∑
=

=
ω

0x
P(x)BT  (4.1) 

with 1  (x) P 0 << , x = 0, ... , ω. It is assumed that over time the sur-
vival fractions P(x), x = 0, ..., ω remain unchanged. Because P(x) de-
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notes the expected fraction of survivors at the end of year 0 that 
were born x years ago, it is a reflection of the prevailing mortality 
conditions. These mortality conditions, as noted, remain unchanged 
over time.  

Because both B and P(x) are constants, it follows that T is a constant. 
Moreover, for any age x, the proportion aged x, that is, P(x) B/T also 
remains the same. Stated otherwise, the age distribution of the pop-
ulation remains unchanged over time. We conclude that the yearly 
number of deaths is D = B; for if D > B the population would decline 
over time and if D < B the population would increase over time. This 
means that the crude birth rate (CBR) is the same as the crude death 
rate (CDR) or B/T = D/T. For this reason it is called a stationary 
population.  

We shall return to a discussion of the stationary population and 
show that it is a special case of what is known as a stable population, 
a concept widely used in demographic analysis. We shall also return 
for a discussion of the stationary population and show that its crude 
birth and death rates are the inverse of its life expectancy. 
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5.0 Mortality 
5.1 The life table 
Ulpian (ca. 170-228 AD), the Roman jurist who inspired much of the 
writings on civil law seems to have made use of a rudimentary life 
table. It is uncertain how it was made and to which uses it was put. 
Edmund Halley (1656-1742), the astronomer, is usually credited 
with having estimated the first life table in modern times (the at-
tempt made by Graunt was flawed). He made use of deaths record-
ed by church books in the German city of Breslau. He ordered the 
deaths in a manner so that they portrayed diminution due to mortal-
ity in a stationary population. About 1780, Richard Price (1771) 
made use of Swedish data to construct a life table correctly. More 
well-known than Price’s historical table is the Carlisle mortality ta-
ble from 1815 constructed by the actuary Joshua Milne. For many 
decades this table served as an important model of human survival. 
Above all, it was William Farr (1807-83) whose early population 
studies helped underpin a tradition of census taking and registration 
of vital events in England and Wales. It was Farr who drew atten-
tion to the excessive mortality in certain districts and within certain 
trades.  His work became a foundation for social legislation and in 
the long run paved the way for the desire to improve mortality con-
ditions, a work that continues to this very day. Dr. Farr held office 
during the reign of Queen Victoria (Cox, 1970, p. 301).  

Life tables building on more than 90 percent complete death regis-
tration are predominantly from after World War II. While today we 
have (reasonably) accurate life tables for the United States, Canada, 
Australia, New Zealand, member states of the European Union and 
some other countries, the majority of today’s world population is 
not covered by reliable life tables. A reason for this is that for the 
past fifty years or so there has been much more preoccupation with 
fertility (population growth) than with mortality. As a result, only 
sparse resources have been made available for upgrading vital regis-
tration systems in the majority of countries. Conflating incomplete 
vital registration data with census data of dubious quality necessari-
ly results in poorly estimated life tables. 
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5.2 Age 
We write xE  for a number of individuals each of whom is aged exact-

ly x years. We differentiate between (i) exact age and (ii) age last 
birthday. The very instant a person reaches the xth birthday the per-
son is aged exactly x years. A person aged between exact ages x and 
x+1 is said to be at age x (such a person is also said to be a life aged x).  

5.3 The central exposed to risk 
The midyear population is what we would obtain were we to con-
duct a census on July 1. Here it is in place to mention that we oper-
ate with two different definitions of population. There is, on the one 
hand, what is known as the de jure population. This is the popula-
tion that normally resides in the nation (the resident population). On 
the other hand, there is also the notion of the de facto population. 
This is the population that was present in the nation at the time of 
the census. These two population counts are not identical. In indu-
strialized countries, the midyear population usually references the 
resident or de jure population, as determined by a population cen-
sus. Whichever definition of population we make use of, it needs to 
be mentioned that it only affords an approximation (good or bad) to 
the hypothetical population we have in mind.  

Persons at age x during any calendar year are assumed to be aged 

exactly 
2
1x +  years on July 1. We denote this population by c

xE  

where the upper-index c stands for “central part of the year9

c
xE

”. We 

call  the central exposed to risk. Denoting deaths among persons 

at age x during the calendar year by xD  and assuming that deaths 

take place uniformly over time, the number of persons aged exactly 
x years at the beginning of the calendar year must be approximately 

xD
2
1c

xExE +=  (5.1) 

                                                      
9 See e.g., Benjamin and Haycocks, 1970. 
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5.4 The mortality rate and the central death rate 
The probability for a person aged exactly x years to die before reach-
ing exact age x+1 is called the mortality rate (sometimes mortality 
risk). The mortality rate is denoted xq . Using (5.1) we have 

xD
2
1c

xE
xD

xE
xD

xq
+

== =
c
x/ExD

2
11

c
x/ExD

+
=

xm
2
11

xm

+
 (5.2) 

where  

c
xE
xD

xm =  (5.3) 

is called the central death rate. In many settings, (5.3) is called an 
age-specific mortality rate. We see that xm is the number of deaths 

at age x divided by an approximation to the exposure time lived by 
the population while at age x. In the literature, a mortality rate is not 
necessarily the same as a death rate. Relation (5.2) links a mortality 
rate with the corresponding central death rate. Numerically, this is 
virtually the same as (3.5). 

5.5 The survival function 
The survival function s(x) is such that s(0) = 1 and s(x) is the proba-
bility for a newborn to survive to age x. Suppose we have mortality 
rates rq , ... ,2q ,1q ,0q . Letting xq1xp −= , we have that 0p  is the 

probability for a newborn to survive to age 1, 1p  is the probability 

for a child having reached age 1 to survive to age 2 and, generally, 

xq1xp −= is the probability for an individual having reached age x 

to survive to age x+1. In consequence, 

s(x) =
 

∏
−

=
=−

1x

0j jp1x...p0p  (5.4) 

is the probability for a newborn to survive to age x. Notice that sur-
vival in this sense is a chain process: first the child must survive 
from birth to age 1, then the child must survive from age 1 to age 2 
and so on. At each age x, survival is a binomial trial with probability 

xq1xp −=  of reaching age x+1. 
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5.6 The number living column of the life table 
Out of a cohort of ol  

newborns, born at the same time, we expect 

ol (x) s  xl =
 
to survive to age x. We call ol (x) s  xl =  the expected 

number of survivors at age x. In demographic literature xl  
is often 

called the number living column of the life table (Keyfitz, 1968, p. 9). 
We refer to ol  

as the radix of the life table. Usually, radix is ol = 

100,000. Alternatively, we call ol  
a synthetic cohort. The number 

living column models decrementing a hypothetical birth cohort in 
which there are ol (x) s  xl =

 
survivors at exact age x. In this popula-

tion the number of deaths between ages x and x+1 is  

1xlxlxd +−= . (5.5) 

5.7 The number of person-years 
In the hypothetical population ol  s(x)  xl = (a population made up of 

expected values), the exposure time consumed by the xl  
survivors 

at age x is approximately  

2
1xlxl

xL ++
=  (5.6) 

times one year. xL
 
is said to be the person-years lived by the life 

table population between ages x and x+1. Notice that xL
 
depends 

on ol . It follows from (5.5) and (5.6) that the central death rate in the 

life table population is x/Lxdxm = . 

5.8 The life expectancy at birth 
Consider a synthetic cohort consisting of ol newborns. Between ages 

0 and 1 they live 0L
 
years. Between ages 1 and 2 they live 1L

 
years 

and, generally, between ages x and x+1 they live xL  years. Alto-

gether, then, ol  
newborn babies live ...1L0L ++  years. This means 

that, on average, they live 

  

 
ol

xL
oe

∑
=
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years. To determine the life expectancy it is necessary to include in 
the summation person-years xL

 
until such an age ω, say, that 

beyond this age there are no more survivors so that the xL ,  

x ≥  ω+1, are zero. In consequence,  

∑
=

=
ω

0x xL 
ol
1

oe   

Using the linear approximation (5.6), we get 

∑
=

+=
ω

1x xl
ol
1

2
1

oe  (5.7) 

which is the most commonly used expression for calculating the life 
expectancy at birth. Occasionally (5.7) is refined to take into account 
that the mean age at death is less than half a year during infancy. Let 

0a  be the mean age at death for infants, then  

0d0a1l0L += = )1l0(l 0a1l −+ = )0a-(1 1l0l 0a + .  

In developing nations it is customary to let 0a = 0.25. Coale and 

Demeny (1966) provide different choices of 0a . Such a refinement 

however is only justified when the survival data are highly reliable 
and, at any rate, has little or no bearing on the estimated life expec-
tancy. 

5.9 The remaining life expectancy at age x 
A person who has survived to age x has a remaining life expectancy 
at that age. Using the same reasoning as in the case of the life expec-
tancy at birth, we have that 

∑
=

=
ω

xt tL
xl
1

xe  (5.8) 

is the remaining life expectancy at age x. 

5.10 The xT  function 
In actuarial and demographic literature, it is common to encounter 
the xT function. This function is the sum of the xL

 
at and above age 

x, that is,  
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∑
=

=
ω

xt tLxT
 

using this function, we get 

xl
xT

xe =  (5.9) 

5.11 The life table as a stationary population 
The stationary life table population is such that each year ol children 

are born and survival s(x) does not change over time. The total mi-
dyear population size is constant over time and equals 

∑
=

++
=∑

=
=

ω

0x 2
1xlxlω

0x xLT =  

 oeol
ω

0x 2
1)(x s(x) s

ol =∑
=

++

 
(5.10) 

Notice also that the number of deaths per calendar year in this pop-
ulation is 

1xl
ω

0x xl
ω

0x xdD +−∑
=

=∑
=

= = ol  

Hence, the crude birth rate (CBR) is the same as the crude death rate 
(CDR), namely  

CBR = 
oe
1

oeol
ol

T
ol ==  (5.11) 

According to (5.11), we have that oe1/CBR = which tells us that the 

inverse of the crude birth rate in a stationary population is the life 
expectancy at birth. In the life table population 1xlxlxd +−= , 

xl
xd

xq =  and 
xL
xd

xm = .  

In the life table population, the mean age at death is the same as the 
life expectancy. This is easily shown. The mean age at death for 
those who die at age 0 is half a year so that the sum of ages for those 
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who die at age 0 is 0d
2
1 . Similarly, those who die at age 1 are, on 

average, one and a half years old so that 1d 1.5  are the sum of ages 

for those who die at age 1. Hence, the mean age at death is 

ol

ω

0x x0.5)d(x∑
=

+
= )

ω

0x 1xlx(l 0.5)(x
ol
1

∑
=

+−+ =





 −+−+− ...22.5l21.5l11.5l1l2

1
ol2

1

ol
1

= 

ol

ω

1x xl

2
1...2l1lol2

1

ol
1

∑
=+=



 +++  

which we recognize as the life expectancy at birth. Here, for ease of 
calculation, we have assumed that individuals who die at age x, die 
at exact age x+0.5; a common approximation.  

5.12 The abridged life table 
It is not always possible to estimate central death rates by single-
year ages. After all, this requires efficient registration practices as 
well as ages being recorded reliably10

In an attempt to smooth misstatement of age (a common reporting 
error), life tables are often given for the broad age groups 0, 1-4, 5-9, 

. Remember also that the ob-
servation plan usually consists of (i) a population census and (ii) a 
register of recorded deaths. Hence, exposures are obtained from one 
source (the population census) while deaths are obtained from 
another (the vital registration system). This is the most common way 
of obtaining records for estimation of life tables (it is commonly re-
ferred to as the actuarial method). It should be noted, though, that in 
the case of a longitudinal survey plan where household members 
are interviewed at the beginning of the survey and re-interviewed 
later on, this also yields the data for an actuarial estimation ap-
proach. 

                                                      
10 In many nations, people do not know their exact birthday. In such cases ages are 
approximate and often heap at ages ending in 0 or 5 (see Spiegelman, 1980, for an 
excellent discussion). 
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10-14, … , 80-84, 85+. This means that central death rates are esti-
mated for these ages. To this end let xDn denote the deaths, during 

a calendar year, among persons aged between ages x and x+n. The 

corresponding central exposed to risk are denoted c
xEn  and the 

central death rate is 

c
xEn 
xDn

xmn =  (5.12) 

and the mortality rate is 





 +

=
 xmn 2

n1 

xmn n xqn   (5.13) 

The survival function is 

)n-xqn)...(11q4(1 )0q(1(x) s −−−=  (5.14) 

and the person-years 

2
nxlxln  xLn

++
=  (5.15) 

The life expectation at age x is 

xl
xT

xe = , x = 0, … (5.16) 

with 

+++= ωL...xLnxT  (5.17) 

5.13 The highest age group 
To complete the life table we must terminate it at a certain age r, say. 
To estimate the life expectancy, we must know how many person-
years are lived beyond age r by the rl  reaching this age. Consider 

now the mortality rate at age r+ , namely  

c
rE
rD

rm
+

+=+  



Demographic Methods for the Statistical Office Mortality 

Statistics Sweden 47 

calculated for a calendar year experience. This can be interpreted as 
the crude death rate in a stationary population where all members 
are aged r and above. With this interpretation in mind, we have that  

+
=+

rm
1

re  (5.18) 

(see also Section 3.5 in Chapter 3). We then obtain that  re rl rL +=+  

( rl  individuals reaching age r are expected to live +re rl years).  

5.14 Graphs of the life table functions 
Fig. 5.1 shows the risk populations for men and women in Sweden 
during 2005. These are the midyear populations. As is always the 
case with observed populations there are numerous undulations in 
the data reflecting time changes in mortality, fertility and migration.  
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Fig. 5.1. Midyear populations of men and women for 
Sweden, 2005

Men Women

 

The figure also illustrates the common surplus of women at ages 65+ 
(the retirement ages). Figures of this nature are helpful for investi-
gating underenumeration in censuses of women; -- we would al-
ways expect more females than males at the higher ages.  
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Fig. 5.2 shows deaths by age for males and females in Sweden dur-
ing 2005. This figure also illustrates the common excess of male 
deaths over female deaths at ages beginning already at about age 50. 
Later, as will be seen, there is a surplus of female deaths over male 
deaths. It is typical of the age distribution of deaths that its peaks at 
a high age (here age 80) and then drops to zero at higher ages. There 
is also a peak at infancy. Here, too, such a graph may be helpful as a 
standard for gauging the completeness of death registration; -- we 
would expect a surplus of female deaths at the higher ages. 
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Fig. 5.2. Male and female deaths: Sweden, 2005
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Fig. 5.3. Male and female mortality risks: Sweden, 2005

Men Women



Demographic Methods for the Statistical Office Mortality 

Statistics Sweden 49 

Fig. 5.1 and fig. 5.2 illustrate the data for estimating central death 
rates or risks. Fig. 5.3 shows mortality risks for men and women for 
Sweden in 2005. Here, to amplify the age-pattern of mortality, the 
transformation 

)xq 6(10ln  xy =
 

has been used. It is important to use such a transformation, as oth-
erwise the age-pattern of child and early adult mortality creeps 
along the x-axis not displaying any visible variation except for adult 
ages. 
 

 
 

Fig. 5.4 shows the survival functions (with radix one) for men and 
women in Sweden, 2005. The corresponding life expectancies at age 
x are shown in fig. 5.5.  
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Fig. 5.4. Survival functions for men and women:  Sweden, 
2005
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Fig. 5.6 shows the corresponding projection probabilities11

x/L1xLp
xu +=

 

. The projection probabilities are used to project the 

population from age x to age x+1. For a review of life table tech-
niques, see Namboodiri and Suchindran (1987) and the Methods 
and Materials of Demography (2004). 

 

 

                                                      
11 Because projection probabilities are of the form L(x+1)/L(x) they are somewhat 
insensitive to changes in central death rates m(x). This is why population projec-
tions corresponding to different life tables may be nearly the same.  
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Fig. 5.5. Remaining life expectancies for men and women: 
Sweden, 2005 
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Sweden, 2005
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To preserve space, table 5.1 gives recorded deaths (Sweden, 2000), 
mortality risks, survival function and life expectancies at age x for 
ages below 10 and for ages 90-95. Notice that in terms of the Lexis 
diagram, the estimation of central death rates is carried out in 
squares, not in parallelograms. This is the most common approach 
to estimating mortality rates (the actuarial method).  
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Table 5.1. Life table for males: Midyear population and deaths for 
Sweden, 2000 

Age Midyear  Mortality  Life 
 population Observed rate  expectancy 
 Males Deaths m(x) s(x) at age x 

0 46,037 157 0.00341 1.0000 77.6 
1 45,966 34 0.00074 0.9966 76.9 
2 46,578 10 0.00021 0.9959 75.9 
3 47,898 4 0.00008 0.9956 74.9 
4 51,188 3 0.00006 0.9956 74.0 
5 55,471 4 0.00007 0.9955 73.0 
6 58,867 6 0.00010 0.9954 72.0 
7 61,933 6 0.00010 0.9953 71.0 
8 64,434 2 0.00003 0.9952 70.0 
9 65,354 10 0.00015 0.9952 69.0 
10 63,780 10 0.00016 0.9951 68.0 
. . . . . . 
. . . . . . 
. . . . . . 
90 4,756 1128 0.23717 0.1327 3.14 
91 3,592 976 0.27171 0.10468 2.85 
92 2,623 839 0.31986 0.07977 2.58 
93 1,865 681 0.36515 0.05794 2.37 
94 1,269 497 0.39165 0.04021 2.19 
95 845 363 0.42959 0.02718 2.01 

 
 

5.15 The actuarial definition of rate 
As noted, the central death rate has many different names such as 
age-specific mortality rate, force of mortality (the preferred name in 
actuarial literature), mortality intensity, instantaneous mortality rate 
or hazard rate (the preferred name in statistical literature). In actuar-
ial literature it is common to define the force of mortally as  

=xμ xl / '
xl-   (5.19) 

where '
xlxldx

d
=  (see chapter 15 for a short introduction to differen-

tiation of a function). To explain (5.19) heuristically, let xμ be a func-

tion of age x such that xμ dx is the probability of death on the infini-

tesimal age-interval between ages x and x+dx. If in a life table popu-
lation there are xl  survivors at age x, then their exposure time be-
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tween ages x and x+dx is dx xl  for which reason the expected 

number of deaths between ages x and x+dx is dx. xl xμ
 
It now fol-

lows that the number of survivors at age x+dx is 

dx xl xμxldxxl −=+ . Hence, 
dx 

xl  dxxl

xl
1

xμ
−+= . Rewriting the 

last expression, we get  
dx 

xl   dxxl

xl
1

xμ
−+= =

xl

'
xl  −   

which is (5.19). It will be noted that (5.19) is a simple first-order li-
near differential equation with solution 

∫−
=

x
0 dt tμ 

exl  
 (5.20)  

that can be verified by the differentiation since 
  

.

x

0
dttμ

e xμxldx
d

∫−

−=
  

From (5.20) it will be seen that 

xl
1xlxl

xq +−
=  = 

∫−

∫
+

−

−
∫−

x

0
dttμ

e

1x

0
dttμ

e

x

0
dttμ

e
= 1-

∫
+

−
1x

x
dttμ

e ≈ xμ  

if tμ
 
is constant between ages x and x+1. This also explains why xq

is referred to as a rate although, in fact, it is a conditional probabili-
ty.  

The observed central death rate tμ̂ , based on exposure time tR , is 

asymptotically normally distributed with asymptotic estimated 
mean  

 tμ̂)tμ̂( E =  (5.21) 

and asymptotic estimated variance 
 

t/Rtμ̂)tμ̂(Var =   (5.22) 
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In addition, central death rates xμ̂  and zμ̂  at different ages x and z, 

respectively, are asymptotically independent (insofar age intervals 
are non-overlapping).  

It is relatively easy to understand (5.22). Since xμxq ≈  , 1xq1 ≈−  

and xRxE ≈ we have 

Var( xμ ) ≈ x)/Exq(1xq)xVar(q −= ≈ ≈x/Exq x/Rxμ . These results 

are often applied to data for small populations and surveys.  

A result similar to (5.22) is easily obtained if one assumes that 
deaths are Poisson distributed with parameter λ on the age/time 
interval 1xtx +<≤ . Deaths (signals) take place at times kt , k = 1, ... 

, n. Let kj  be the number of cumulated deaths at time kt . This 

means that kj  is Poisson distributed with parameter kt λ so that its 

mean and variance are E( kj ) = Var( kj ) = kt λ.  The expected num-

ber of deaths at time nt  is λnt . At time nt  , we let nj  = n.  

The maximum-likelihood function12

L = 

 for the experiment is  

/n!
λ  nt-

e n) λn(t   

so that 

log L = n log nt + n log λ - λnt - log n! 

wherefore 

0ntλ
nL log

dλ
d

=−=  

yields that the maximum-likelihood estimator for λ is 

nn/tn/tnjλ̂ ==  

                                                      
12 The maximum-likelihood method of estimation was popularized by the British 
statistician and evolutionary biologist Sir Ronald Fisher (1890-1962). The method 
however had been used earlier by Gauss, Laplace, Thiele and Edgeworth (Hald, 
1998). Today this is the most commonly used method of statistical estimation. 
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that is, λ̂  is the observed intensity with which deaths took place on 
the interval. Because nj is Poisson distributed with parameter λnt  

the expected value of λ̂  is E( λ̂ ) = λ with variance Var( λ̂ ) = λ̂ / nt . 

On several occasions we have noted that a rate is the ratio between 
events and the exposure time elapsed for their observation. This was 
the intuitive position taken by the British actuary Joshua Milne 
(1776-1851). Later, it became clear that this choice of definition is in 
agreement with the exponential distribution, which is often used to 
model survival (life testing). We now turn to a brief outline of the 
exponential distribution. 

A positive and continuous random variable X with probability den-
sity function  

f(x) =  xθe θ −  , x > 0 (5.23) 

is said to be exponentially distributed. The distribution function is 

∫=
x

0
f(u)duF(x) = 1- θxe−  (5.24) 

which is the probability P(X < x). The survival function is 

S(x) = 1 – F(x) = P(X > x) = θxe−  (5.25) 

S(x) is the probability that the individual survives at least to age x 
(dies after age x). Application of (5.21) to (5.25) shows that θ is the 
piecewise constant mortality rate on the interval under considera-
tion. Hence, underneath the definition of a piecewise constant mo-
rality rate is that deaths are exponentially distributed. We shall now 
show that if deaths are exponentially distributed then the number of 
deaths (events) divided by their corresponding exposure time is a 
maximum-likelihood estimator for the mortality rate. 

For simplicity, we limit our attention to infancy, that is, the age in-
terval 0 ≤ x < 1, for which we write [0,1[. Assuming that deaths are 
exponentially distributed on [0, 1[, and that infants die independent-
ly of one another at ages nt,...,1t on [0, 1[, the maximum-likelihood 

function for the experiment becomes 

n...dt1dtnN)θ(enθt
θe ...1θt

θe L −−−−
=  
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(this is the probability with which we have observed the events gen-
erated by the experiment) that is, 

L= n...dt1dt  

n

1
n)Nktθ(

e nθ
∑ −+−

 

so that13
n...dt1dt omitting the term log ( ) 

∑ −+−=
n

1
n)Nktθ(logθn logL  

which means that 

∑ −+−=
n

1
n)Nktθ

nlogL
dθ
d

 

Letting 0=logL
dθ
d  the maximum-likelihood estimator becomes 

∑ −+

= n

1
nNkt

nθ̂  

which is precisely the number of infant deaths divided by the expo-
sure time corresponding to n infants who died, and N-n infants who 
survived and each contributed one year of exposure time. The 
above-mentioned results can be generalized to any age interval for 
which the rate of mortality is constant.  

5.16 The variance of the life expectancy 
Because the life expectancy is a complicated function of the central 
death rates  it is also complicated to find an estimator for the va-
riance of the life expectancy. Perhaps the most intuitive approach for 
gaining insight into the distribution of the life expectancy is to simu-
late life tables so that each simulation reflects the same probabilistic 
mechanism. This can be done by means of binomial trials. A simple 
approach would be like this: let xq be the probability of death be-

tween ages x and x+1 for a person aged x. Let xE be the exposed to 

                                                      
13 It can be shown that maximizing L is the same as maximizing log L. 
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risk at age x, then the expected number of deaths at age x is xq xE .  

Draw xE  random numbers on [0,1[. Let x
jd

 
be the j:th such random 

number. Performing xE  trials, we let 1x
jd =

 
if x

jr < xq  and 0 oth-

erwise. The simulated number of deaths at age x is ∑= x
jdxD~  

(summation over j). The simulated death rates become x/ExD~xq~ =  

from which a simulated survival function and corresponding life 
expectancy may be calculated.  Repeating the experiment a large 
number of times, the distribution for the life expectancy can be 
sketched. We shall shortly illustrate this technique. 

It is however possible to follow another path for finding the variance 
of the life expectancy. Because an implicit approximation to the life 
expectancy at age α is 

Var αê ≈ iq̂Var 
2ω

αi aê
iq δ

δ
∑
= 











 

It can be shown that, for large exposures, an approximation to the 
expected variance of the life expectancy at age α is 

=)αê(Var 
 

iD

)iq̂(12
iq̂

  
2

in )ia(11inê 
ω

αi
2

i αp̂
−









−++∑

=
 (5.21) 

In (5.21) αip  is the probability of survival from age α to age i, ie  the 

remaining life expectancy at age i, in  the length of age-interval be-

ginning at age i, and i+ ia in  the mean age at death for those who die 

in age-interval i. This is known as Chiang’s variance estimator (see 
e.g., Chiang, 1968, pp. 189-241; Irwin, 1949; Keyfitz, 1977, p. 430; 
Wilson, 1938).  

It is assumed that 1ωq = , ω signifying the highest age at which there 

are survivors. Writing i/qiDiE =  and letting ia = 0.5, (5.21) for sin-

gle-year ages becomes 
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[ ]
iE

)iq̂(1iq̂
  2 0.51iê 

ω

αi
2

i αp̂)αê(Var 
−

++∑
=

=  (5.22) 

which is more convenient for application since it refers to the ex-
posed to risk.  

As noted, the asymptotic variance (5.21) has been found with the 
assumption that exposures are very large. Table 5.2 shows the nu-
merical example originally given by Chiang (1968) when he applied 
his estimator. He made use of the US both sexes life table for 1960 
based on a population of 179,325,657 and 1,711,262 deaths; a very 
large population resulting in a very small standard deviation for the 
life expectancy at birth. 

To explore what the variance of the life expectancy at birth is for a 
much smaller population, table 5.3 gives the same mortality risks as 
table 5.2 but with a population size that is scaled to 176,926. The 
corresponding expected deaths for an annual experience is 2,853.  

Table 5.2. US both sexes life table for 1960 and estimated standard 
deviations of remaining life expectancies 

Age Both sexes Deaths m(x) 
xe  Sd ( xe ) 

0 4,126,560 110,873 0.02651 69.73 0.012 
1 16,195,304 17,682 0.00436 70.62 0.010 
5 18,659,141 9,163 0.00245 66.92 0.010 
10 16,815,965 7,374 0.00219 62.08 0.010 
15 13,287,434 12,185 0.00457 57.21 0.010 
20 10,803,165 13,348 0.00616 52.46 0.010 
25 10,870,386 14,214 0.00652 47.77 0.009 
30 11,951,709 19,200 0.00800 43.06 0.009 
35 12,508,316 29,161 0.01159 38.39 0.009 
40 11,567,216 42,942 0.01839 33.81 0.009 
45 10,928,878 64,283 0.02898 29.40 0.008 
50 9,696,502 90,593 0.04564 25.20 0.008 
55 8,595,947 116,753 0.06566 21.29 0.007 
60 7,111,897 153,444 0.10226 17.61 0.006 
65 6,186,763 196,605 0.14691 14.33 0.005 
70 4,661,136 223,707 0.21335 11.37 0.004 
75 2,977,347 219,978 0.30886 8.77 0.003 
80 1,518,206 185,231 0.45667 6.57 0.002 
85 648,581 120,366 0.60462 4.99 0.001 
90 170,653 50,278 0.77079 3.81 0.001 
95+ 44,551 13,882 1.00000 3.21 0.000 

      
 

179,325,657 1,711,262 
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Table 5.3 also shows five simulation series each giving 20 realiza-
tions of the life expectancy together with their means and standard 
deviations. The mean of the five simulations is 0e = 67.8 years, and 

the mean of the five standard deviations is σ = 0.61. The Chiang SD 
comes out at (Chiang) σ = 0.31. Apparently, (5.21) underestimates the 
variance when the risk population is small.  

Table 5.3. Five simulation series of the life expectancy 

Simula-
tion num-
ber 

Simulated life expectancy Age 
xqn  Popula-

tion 
Deaths 

1 2 3 4 5   

1 69.3 70.0 68.9 69.3 68.9 0 0.0265 3,534 94 
2 67.9 71.1 71.1 70.0 69.8 1 0.0044 21,910 96 
3 69.3 69.6 69.3 69.9 69.3 5 0.0025 23,461 57 
4 69.1 69.9 70.2 69.3 70.8 10 0.0022 22,279 49 
5 69.5 69.7 70.6 70.2 69.3 15 0.0046 22,713 104 
6 69.5 69.1 70.6 70.2 70.4 20 0.0062 22,231 137 
7 69.8 69.9 69.5 68.4 70.1 25 0.0065 17,223 112 
8 69.8 69.9 70.5 68.7 70.3 30 0.0080 11,232 90 
9 69.5 69.6 70.3 69.6 70.6 35 0.0116 8,186 95 
10 68.9 69.1 69.6 69.4 69.1 40 0.0184 5,638 104 
11 69.9 69.6 69.5 68.8 70.4 45 0.0290 4,669 135 
12 68.7 69.3 69.5 70.4 69.5 50 0.0456 3,874 177 
13 69.7 71.1 70.4 69.6 69.1 55 0.0657 3,056 201 
14 70.0 68.4 69.0 69.3 70.6 60 0.1023 2,414 247 
15 70.5 70.5 70.8 69.5 70.0 65 0.1469 1,968 289 
16 70.2 70.0 69.4 70.1 70.0 70 0.2134 1,263 269 
17 70.5 70.7 70.2 69.4 70.3 75 0.3089 536 166 
18 69.8 69.2 70.3 70.1 70.1 80 0.4567 392 179 
19 69.0 69.5 70.1 69.7 69.5 85 0.6046 181 109 
20 69.4 70.9 70.7 69.8 70.2 90 0.7708 95 73 

      
95+ 1.0000 71 71 

          Mean 69.5 69.9 70.0 69.6 69.9 
    SD 0.61 0.71 0.63 0.53 0.57 
 

Total 176,926 2,853 
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Fig. 5.8 shows life expectancies for males and females in the Swedish 
municipality Klippan with mean populations of about 8,000 males 
and females during 1975-2000. The standard deviations14

mσ̂ are = 

1.9 and fσ̂ = 2.1 years for males and females, respectively. Similar 

standard deviations are shown for 17 small municipalities in Swe-
den, 1975-2000 (table 5.4). 

 It may be noted that although life expectancies increased in the mu-
nicipalities during 1975-2000, nevertheless table 5.5 gives useful es-
timates of the sampling standard deviation of the life expectancy for 
small populations. It should also be mentioned that the standard 
deviations are rather insensitive to moderate changes in the under-
lying mortality risks. 

 

                                                      
14 As calculated for the series of 26 observations. 
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Table 5.4. Approximate standard deviations for life expectancies in  
17 small municipalities: Sweden, 1975-2000 

Municipality Population Standard deviation 

 Males Females Males Females 

Arjeplog 2,007 1,811 4.8 4.3 
Boxholm 2,851 2,715 3.3 3.3 
Odeshög 3,011 2,932 2.3 3.0 
Ragunda 3,666 3,428 2.4 2.6 
Laxå 4,021 3,820 2.3 2.7 
Torsås 4,029 3,770 2.4 2.5 
Lessebo 4,447 4,339 2.2 2.6 
Pajala 4,605 3,993 2.1 3.1 
Svalöv 6,442 6,169 1.6 2.1 
Ånge 6,460 6,248 2.3 1.7 
Älmhult 7,941 7,652 2.2 2.2 
Klippan 8,053 8,083 1.9 2.1 
Sala 10,633 10,676 2.3 1.7 
Nynäshamn 10,755 10,512 1.7 1.8 
Laholm 11,045 10,739 1.7 1.5 
Arvika 13,099 13,502 2.0 2.0 
Katrineholm 15,801 16,270 2.1 2.0 

Source: M. Hartmann, 2004. Statistics Sweden. 
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6.0 The Stable Population 
6.1 An early invention 
It was the Swiss mathematician Leonard Euler (1707-83) who devel-
oped the stable population model. Euler made the assumption that 
all births take place on July 1, that is in the middle of the year, and 
that they increase exponentially over time. Survival s(x) is assumed 
time-invariant.  

If ω years ago B births took place, then ω years later the survivors 

will be s(ω) B. In year ω-1 there were re B births where r is the expo-
nential rate of yearly increase of births. The survivors ω – 1 years 

later are s(ω-1) re B . In year ω-2 there were 2re B births of which the 

survivors ω - 2 years later are s(ω-2) 2re B  , and so on. Continuing in 
this fashion we find that the population size in year 0 on 1 July is 

ωr(0)B s...r1)B(ω sB )ω( s0T ++−+=   (6.1) 

which implies that 





 −++−++= ωre )ω( s...2re (2) sr-(1)e s(0) s ωrBe0T  

so that 





 −++−++= ωre )ω( s...2re (2) sr-(1)e s1ωrBe0T  

Dividing both sides of the equality sign by 0T
 we obtain 

ωre )ω( s b...re (1) s bb1 −++−+=  (6.2) 

where b is the crude birth rate. The right-hand side of (6.2) sums to one and 
thus gives the age distribution of the population. The proportion of the pop-

ulation aged 0 is b, the proportion aged 1 is re (1) s  b − , the proportion 

aged 2 is re (2) s  b 2−  and so on. This is the stable age distribution (Key-
fitz and Flieger, 1971). A stationary population is a stable population for 
which r = 0.  

Euler’s paper on the stable population model appeared in the Bel-
gian Académie Royala des Sciences et Belles-Lettres in 1760, that is, 
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just about a hundred years after Graunt had published his ”Obser-
vations on the bills of mortality.” There is a considerable amount of 
literature devoted to stable populations and their characteristics.  

6.2 Application of stable age distributions 
The age distribution of a stable age distribution is usually written15

c(a) da = 

 

da s(a) rae b −  (6.3) 

where c(a) da is the proportion of the population aged between a 
and a+da. From (6.3) it follows that 

b

rae c(a)(a) s =  (6.4) 

Euler noted that if an age distribution can be found from a census 
and if the corresponding crude birth rate and rate of population 
growth are known, then the population’s survivorship can be in-
ferred. Euler, then, was an early inventor of indirect estimation. It 
will be noted that 

rabln 
(a) s
(a) cln −=  (6.5) 

can be used to estimate the crude birth rate and the rate of popula-
tion growth from the age-distribution c(a). Using a standard statis-
tical package, (6.4) or (6.5) can be used for simultaneous estimation 
of survivorship, the crude birth rate and the natural rate of popula-
tion increase (requires well-behaved data). Stable relationships like 
(6.5) have been used for estimation of mortality and fertility in na-
tions with incomplete vital registration (Brass 1975).  

6.3 An application to Abu Dhabi Emirate 2005 
population census 
Fig. 6.1 shows an application of (6.3) to the percent age-distribution 
recorded for females who were United Arab Emirate citizens in the 
2005 Abu Dhabi Emirate population census. The estimated parame-
ters are b = 0.036 and r = 0.029. The a priori chosen survival function 
is for Swedish females 1960 with a life expectancy of 74.9 years. The 
figure brings to light some interesting features. In the first place, it 
                                                      
15 Here da signifies an infinitesimal age increment. In (6.3), the proportion of lives in 
the interval between ages a and a+da is c(a)da. 
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will be noted that, evidently, fertility began to fall rapidly some 20 
years ago, that is, during the early 1980s. In the second place, it will 
also be seen that the accuracy of age-reporting has improved consi-
derably after the 1980s (there is much less serration in the reported 
ages after 1980 than before).  

The estimated crude birth rate of about 36 per 1,000, and its asso-
ciated growth rate of about 3 percent per year, most likely, do not 
apply to the time of the census; estimates reflect more so the past 
than the present. Nevertheless, even if this application of the me-
thod does not yield reliable estimates for the present, it helps high-
light that there must have been radical changes in reproductive be-
havior during the past 20 years or so.  

An alternative approach is to only make use of the most recent data, 
for example, data going back 10 years in time (table 6.1). In this ap-
plication we have used the Danish male life table for 1982  
( 71.6oe = ) with relation (6.5). The value at age 0 for both sexes has 

been modified (interpolated) so that it is -3.6 at age 0 (table 6.1). The 
reason for this is the very strong dip at age 0 suggesting considera-
ble underenumeration of infants in the census. The equation for the 
fitted line is given in fig. 6.2. It suggests a growth rate of about 1.6 
percent per year, and a crude birth rate of exp(-3.474) = 31 per 1,000 
population. The results of this application can be difficult to interp-
ret, not only because of the short range of ages but also because of 
the possibility of an erratic enumeration of the population.  
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Table 6.1. Application of stable model to age-distribution for UAE citi-
zens as obtained from the UAE 2005 census of population 

 ln[c(a)/s(a)]  ln[c(a)/s(a)] 

Age Males Females Age Both sexes 

0 -3.90869 -3.92102 0 -3.6000 

1 -3.43538 -3.49106 1 -3.4632 

2 -3.41386 -3.46191 2 -3.4379 

3 -3.46964 -3.49935 3 -3.4845 

4 -3.54446 -3.55838 4 -3.5514 

5 -3.52785 -3.57052 5 -3.5492 

6 -3.66456 -3.70207 6 -3.6833 

7 -3.64845 -3.70869 7 -3.6786 

8 -3.60322 -3.61595 8 -3.6096 

9 -3.65199 -3.68795 9 -3.6700 
10 -3.57199 -3.61597 10 -3.5940 

 

 

y = -0,0167x - 3,4748

-3,7500
-3,7000
-3,6500
-3,6000
-3,5500
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-3,4500
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-3,3500
-3,3000

0 1 2 3 4 5 6 7 8 9 10

Fig. 6.2. Linear application of stable population to the both 
sexes age distribution: Abu Dhabi 2005 population census.
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6.4 The stable population and indirect estimation 
Despite the fact that the stable population model is a pretty rigid 
one, it has been used on numerous occasions with success. Many 
years ago, the population of England and Wales had ”stable fea-
tures” and was used to illustrate techniques of indirect estimation 
based on the stable population model (see e.g., Brass, 1974).  

Roughly speaking, between the late 1950s and early 1980s much 
research was devoted to developing estimation methods based on 
the stable population model. These methods were used to estimate 
mortality and fertility in developing nations with incomplete vital 
registration and deficient censuses. Methods of this nature are still 
in use (see e.g., United Nations, 1968).  

It was Alfred J. Lotka (1880-1949) who popularized the concept of 
the stable population and gave it modern statistical treatment 
(Shryock and Siegel, 1975). Several important contributions were 
also made by Ansley Coale (1917-2002). 
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7.0 Standardization 
7.1 The crude death rate and its dependence on 
the age distribution 
Heretofore, we have given relatively little attention to the crude 
death rate (3.7). We shall now see that this measure can be difficult 
to interpret. As noted, the crude death rate is the total number of 
deaths divided by the total population. Letting xm  be the central 

death rate at age x and c
xE  the corresponding central exposed to risk 

at age x (the midyear population aged x), we have that the total 
number of deaths is  

D = xm 
ω

0x
c
xE∑

=
 

The total midyear population is  

P =  
ω

0x
c
xE∑

=
  

for which reason the crude death rate is  

CDR = xm 
ω

0x
c
xE

P
D

∑
=

= /  
ω

0x
c
xE∑

=
 (7.1) 

It can be shown16

CDR = 

 that (7.1) implies that there is an age y such that 

ym (depending on the xE ). It should be clear from (7.1) that 

CDR greatly depends on the age distribution of the population. De-
noting the age distribution by  

∑

= ω

0
c
xE

c
xE

xP   

                                                      
16 Mean value theorem for integrals. 
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(the proportion of the population aged x), the crude death rate ap-
pears as 

CDR = xm
ω

0 xP∑  

that is as a weighted average of the central death rates. Because dif-
ferent populations have different age distributions, the very same 
set of central death rates may yield much different values of CDR. 
For this reason, we say that the central death rate is a mortality 
measure that is confounded with the age distribution (or age struc-
ture). It is in recognition of this that it may be useful to standardize 
mortality measures. We now turn to a discussion of how this may be 
achieved. 

7.2 Standardization of mortality rates 
Let A and S be two different populations. For a given calendar year, 
we let  

CDR(A) = xm̂ 
ω

0x
c
xE∑

=
/  

ω

0x
c
xE∑

=
 

denote the crude death rate for population A. Here xm̂ are the esti-

mated central death rates for population A. We refer to population S 
as the standard population and let 

CDR(S) = xμ̂ 
ω

0x
sc,

xE∑
=

/  
ω

0x
sc,

xE∑
=

 

Here xμ̂ are estimated central death rates for the standard popula-

tion S. We might ask: “What would have been the crude death rate 
for the standard population if we had applied to it the estimated 
mortality rates for population A?” The answer is  

I(S) = xm̂ 
ω

0x
sc,

xE∑
=

/  
ω

0x
sc,

xE∑
=

. (7.2) 

We refer to this as direct standardization of mortality.  
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The mortality ratio  

CMF = xm̂ 
ω

0x
sc,

xE∑
=

/  
ω

0x
sc,

xE∑
=

/ xμ̂ 
ω

0x
sc,

xE∑
=

/  
ω

0x
sc,

xE∑
=

= 

)
xμ̂
xm̂

( xμ̂
ω

0x
 sc,

xE∑
=

/ xμ̂ 
ω

0x
sc,

xE∑
=

 (7.3) 

is called the Comparative Mortality Factor (Cox 1970, p. 171). If for 
all x, xμ̂xm̂ =  then CMF = 1. The Comparative Mortality Factor 

expresses how much stronger or weaker the mortality of population 
A is relative to the mortality of the standard population.  

It is in place to discuss a numerical example given by Pressat (1980, 
pp. 102-103). His example involves comparing mortality between 
white and nonwhite males in the United States in 1965. In 1965 the 
crude death rate was CDR = 10.85 per 1,000 for white males whereas 
it was CDR = 11.14 per 1,000 for nonwhite males. Comparing the 
crude death rates it would appear that white and nonwhite males 
enjoy nearly the same mortality. Pressat (1980, pp. 102-103) writes: 

 “For the reader not forewarned, it would appear that the sanitary and 
health conditions are almost identical for nonwhites and whites, which 
would belie virtually all the age-specific rates. In order to neutralize the 
effect of age structure, we need to choose a standard population. No exact 
rule is applicable here, but one possibility is to take one of the two popula-
tions as the standard population and apply the rates of the other population 
to it.” 

Table 7.1 gives the 1965 midyear populations by age for the non-
white male population, the age-specific mortality rates for white 
males in 1965 and the corresponding expected deaths (Pressat, 1980). 
The total midyear population of nonwhite males is 11,190,000 and 
the expected deaths 93,599. As a result we obtain a standardized 
crude birth rate of CDR(s) = 93,599/11,190,000 = 0.00836 or 8.36 per 
1,000. This shows that if the nonwhite male population had had the 
same age-specific mortality as white males, their crude death rate 
would have been 8.36 per 1,000 instead of 11.14 per 1,000. Stated 
otherwise, the comparative factor is CMF = 11.14/8.36 = 1.33 so that, 
in effect, nonwhites have 33 percent higher mortality than whites 
(relative to the chosen standard). 
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Table 7.1. Expected number of deaths in United States nonwhite male 
population, based upon age-specific mortality rates for the white male 
population, 1965  

 Nonwhites White males 
m(x) 

Expected male 
deaths 

Total 11,190,000 10.85 93,599 
Age 

   0 322,000 23.74 7,644 
4 1,327,000 0.89 1,181 
5 1,487,000 0.47 699 
10 1,316,000 0.49 645 
15 1,071,000 1.31 1,403 
20 780,000 1.72 1,342 
25 631,000 1.57 991 
30 607,000 1.79 1,087 
35 615,000 2.57 1,581 
40 615,000 4.11 2,528 
45 536,000 6.82 3,656 
50 493,000 11.44 5,640 
55 404,000 18.1 7,312 
60 345,000 27.16 9,370 
65 227,000 41.26 9,366 
70 184,000 59.41 10,931 
75 118,000 85.03 10,034 
80 71,000 127.77 9,072 
85+ 41,000 222.43 9,120 
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8.0 Fertility 
8.1 The crude birth rate 
We have already discussed the crude birth rate (CBR) but repeat it 
here for convenience. The crude birth rate is the total number of 
births during a calendar year divided by the corresponding midyear 
population. It is not a “clean” rate because it relates births to both 
women and men and, moreover, builds on all age groups. This is 
why it is known as a crude rate. The crude birth rate has served as 
an important index of fertility or reproduction in many countries 
because it was the only fertility index that could be estimated easily. 
It is however heavily confounded with the age distribution of the 
population for which reason it may be misleading as an index of 
reproduction17

8.2 The age-specific fertility rate 

. To this must be added that in cases where birth reg-
istration is incomplete and the census is affected by appreciable un-
derenumeration, CBR may be materially inflated or deflated (a 
common problem in countries with deficient birth registration and 
where censuses are of poor coverage).  

If, during a calendar year, xW is the midyear female population 

aged x and xB is the number of their live births, then  

xW
xB

xf =  (8.1) 

is known as the age-specific fertility rate at age x. The age-specific 
fertility rate xf  is the annual number of births divided by the num-

ber of person-years (or exposure time) lived by females while at age 
x. Notice that (8.1) also could be written xBxWxf = so that we get 

the result that rate times exposure time is the number of births.  

                                                      
17 It is, for this reason, somewhat ironic that family planning goals often have been 
stated in terms of crude birth rates. 
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The age-specific fertility rates for all the reproductive ages  

14, 15, … , 49 are known as the fertility schedule18

xf5

. For five-year age 
groups, we write for the age-specific fertility rate. For five-year 

age groups of women 

xW5
xB5

xf5 =  (8.2) 

where xB5 are the births that took place during a calendar year for 

the midyear population of women aged between ages x and x+5, 
denoted xW5 .  

8.3 The total fertility rate (TFR) 
Among the many indices used for measurement of fertility, the total 
fertility rate (TFR) is the most commonly used. TFR is defined as the 
sum of the age-specific fertility rates estimated for a calendar year. 
Hence,  

TFR = ∑
49

15x
xf  

=
 (8.3) 

where the limits of summation are ages 15 and 49, which are usually 
taken as the lowest and highest reproductive ages. In the event 
where other ages are more relevant for delimiting reproductive from 
non-reproductive ages, these are used in the summation for TFR. It 
will be appreciated that 15f  times one person-year is the number of 

children expected to be born by women aged 15, 16f  times one per-

son-year is the number of children expected to be born by women 
aged 16, etc. Hence, TFR is the expected number of children a wom-
an is expected to give live birth to if she has fertility xf  and survives 

to the end of the reproductive period.  

TFR is a somewhat artificial measure in that its interpretation in-
volves a projection of the assumption that age-specific fertility rates 
estimated for a calendar year (or for another convenient period) will 

                                                      
18 In British literature there is frequent reference to fertility and mortality schedules. 
In American literature this is less common. Here one ordinarily speaks of age-
specific mortality and fertility. 
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apply to a woman throughout her reproductive life. In the case of 
working with five-year age groups,  

TFR = 5 ∑
45

15 xf5  (8.4) 

For illustrative purposes, fig. 8.1 shows the total fertility rate for 
Sweden during 1900-2007. It is easily appreciated that even if we 
have a long time-series of TFRs, yet it is of little or no aid in project-
ing future TFRs. Stating it differently, the history of the time-series 
(process) does not determine with any degree of reasonable preci-
sion its future unfolding. Because, as we shall see later, it is fertility 
that principally determines the future size and age-distribution of 
the population, it follows that population projections necessarily 
must be of an uncertain nature.  

 
Source: Statistics Sweden. 
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Fig. 8.1. Total fertility rate: Sweden, 1900-2007
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Source: Statistical Abstract of the United States 1997, U.S. Department of Commerce, Eco-
nomics and Statistics Administration, Bureau of the Census, p. 77.  
 

Fig. 8.2 shows TFR for whites and coloreds in the United States, 
1979-94. It will be noted that the TFR curves for whites and coloreds 
are almost parallel albeit at much different levels. There is much to 
be gleaned from such a diagram because it suggests very considera-
ble social and economic differences between ethnic groups.  

8.4 The gross reproduction rate 
Because only women reproduce, a measure of fertility that perhaps 
is more realistic is the gross reproduction rate (GRR) which is the 
number of live born girl babies a woman is expected to have if she 
survives to the end of her reproductive period and her fertility is xf . 

Assuming that the sex ratio at birth is 100 girls for every 105 boys 

GRR = ∑
49

15 xf   
2.05

1
 (8.5) 
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Fig. 8.2. Estimated total fertility rates for total, whites and 
black and others, the United States, 1979-1994
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8.5 The net reproduction rate 
The total fertility rate and the gross reproduction rates suffer from 
the disadvantage that they do not take survival of women into con-
sideration. Denoting by xL the female life table person-years (radix 

one), the net reproduction rate is 

NRR = xf
49

15
 xL

2.05
1

∑  (8.6) 

which is the expected number of live born girl children a woman is 
expected to have if she has mortality xL  and fertility xf .  

Notice, once again, that TFR, GRR and NRR are indices of fertility 
that build on the assumption that the chosen age-specific fertility 
rates will apply to women throughout their reproductive ages. Be-
cause fertility has a tendency to change relatively fast even across 
limited time periods, it is evident that such measures must be inter-
preted with caution.  

8.6 The normalized fertility schedule 
As noted, we call the set of age-specific fertility rates 49f,...,15f the 

fertility schedule. The normalized fertility schedule consists of the 
age-specific fertility rates 49g,...,15g  where TFR/ xfxg = so that 

∑
49

15 xg = 1. 

This re-scaling of the age-specific fertility rates facilitates compari-
son of age-patterns of fertility. 

8.7 The mean age of the fertility schedule 
The mean age of the fertility schedule is defined as 

∑
=

+=∑
=

+=
49

15x xg 0.5)(x
49

15x xf 0.5)(x
TFR

1m  (8.7) 

Basically, the mean age of the fertility schedule is its central location. 
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8.8 The variance of the fertility schedule 
The variance of the fertility schedule is defined as 

∑
=

+=
49

15x xg 2m)-0.5(x2σ = 2mxg
49

15x
20.5)(x −∑

=
+  (8.8) 

The variance of the fertility schedule indicates how spread out it is. 
In populations where fertility is high (limited birth control) the va-
riance is usually quite high (around 40 or so). In countries with high 
levels of fertility control it is low (around 20 or so). 

8.9 Age-specific fertility rates for Sweden and 
France 
Fig. 8.3 shows age-specific fertility rates for women in Sweden 2002 
plotted against age. The plot is known as the age-pattern of fertility. 
Here it is a curve almost symmetrical about its mean. The total fertil-
ity rate calculated from these rates is TFR = 1.64. The mean age of 
the fertility schedule calculated using (8.7) is m = 30.5 years. The 
rates and calculations of mean and variance for the Swedish 2002 
schedule are given in table 8.1. 
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Table 8.1. Age-specific fertility rates, mean and variance:  
Sweden 2002 

Age 
xf  xf 0.5)(x +  xf 20.5)(x +  

15 0.0002 0.0029 0.0445 
16 0.0009 0.0151 0.2490 
17 0.0038 0.0674 1.1788 
18 0.0068 0.1256 2.3244 
19 0.0130 0.2532 4.9370 
20 0.0218 0.4466 9.1561 
21 0.0307 0.6595 14.1801 
22 0.0429 0.9663 21.7424 
23 0.0534 1.2558 29.5110 
24 0.0618 1.5140 37.0929 
25 0.0758 1.9322 49.2710 
26 0.0876 2.3220 61.5328 
27 0.1028 2.8263 77.7231 
28 0.1176 3.3526 95.5483 
29 0.1235 3.6420 107.4390 
30 0.1311 3.9980 121.9400 
31 0.1310 4.1255 129.9535 
32 0.1196 3.8881 126.3632 
33 0.1026 3.4369 115.1366 
34 0.0903 3.1164 107.5155 
35 0.0771 2.7383 97.2089 
36 0.0642 2.3425 85.5000 
37 0.0510 1.9126 71.7233 
38 0.0405 1.5599 60.0579 
39 0.0310 1.2257 48.4151 
40 0.0220 0.8917 36.1140 
41 0.0150 0.6221 25.8165 
42 0.0098 0.4169 17.7167 
43 0.0051 0.2240 9.7440 
44 0.0033 0.1464 6.5168 
45 0.0016 0.0734 3.3408 
46 0.0006 0.0257 1.1927 
47 0.0003 0.0133 0.6297 
48 0.0001 0.0059 0.2869 
49 0.0001 0.0068 0.3382 

Sum 1.6391 50.1516 1577.4407 
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Calculation of mean and variance of fertility schedule: 

m = 50.1516/1.6391 = 30.6   

2σ = 1577.4407/1.6391- 2m = 26.2 

 
 

Fig. 8.4 shows the age-pattern of fertility for France 1949. Generally 
speaking, the age-pattern of fertility (as we usually see it) is better 
portrayed by the French schedule than by the Swedish which, as 
noted, is almost symmetrical about its mean. To get a better impres-
sion of the differences in age-pattern between the two schedules, fig. 
8.5 shows the normalized schedules.  
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Fig. 8.3. Age-specific fertility: Sweden, 2002



Demographic Methods for the Statistical Office Fertility 

Statistics Sweden 81 

Table 8.2. Age-specific fertility rates for France, 1949 

Age Women Births xf  Age Women Births xf  

15 302,363 300 0.00100 33 157,734 18,400 0.11670 
16 301,704 1,280 0.00420 34 196,636 20,289 0.10320 
17 320,359 4,354 0.01360 35 302,120 28,205 0.09340 
18 322,957 10,949 0.03390 36 306,002 25,421 0.08310 
19 330,308 21,843 0.06610 37 310,195 22,472 0.07240 
20 315,998 32,970 0.10430 38 292,986 18,063 0.06170 
21 321,710 45,956 0.14280 39 310,944 16,140 0.05190 
22 319,911 55,090 0.17220 40 310,984 12,873 0.04140 
23 326,518 61,464 0.18820 41 314,115 10,083 0.03210 
24 326,991 64,633 0.19770 42 306,096 7,263 0.02370 
25 320,731 63,291 0.19730 43 310,655 5,193 0.01670 
26 324,135 61,775 0.19060 44 308,358 3,137 0.01020 
27 326,739 60,447 0.18500 45 309,479 1,862 0.00600 
28 339,839 58,890 0.17330 46 307,179 953 0.00310 
29 346,318 56,103 0.16200 47 311,839 439 0.00140 
30 208,975 31,459 0.15050 48 307,399 176 0.00060 
31 186,911 25,631 0.13710 49 296,586 87 0.00030 
32 165,350 21,102 0.12760 

    

      

TFR 3.0 

 

 
 

0,000

0,050

0,100

0,150

0,200

0,250

15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fig. 8.4. Age-specific fertility rates: France, 1949
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It should be noted that the mean age of the fertility schedule is not 
the same as the mean age at childbearing. The reason for this is that 
the mean age of the fertility schedule assumes that there are equally 
many women in each age group (a uniform age distribution). In re-
ality, the age distribution across fertile ages is not uniform for which 
reason there are slight differences between the mean age of the fer-
tility schedule and the observed mean age at childbearing. 

8.10 Marital, single and all fertility 
The age-patterns of fertility for married, unmarried and all women 
are usually materially different. Table 8.3 gives age-specific fertility 
rates for five-year age groups of married, single and all women for 
Sweden, 1951-55. Fig. 8.6 illustrates the three age-patterns of fertility. 
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Table 8.3. Marital, single and all age-specific fertility rates:  
Sweden 1951-55, per 1,000 

Age Marital  
fertility 

Single  
fertility 

All  
fertility 

15-19 543.4 18.9 37.8 
20-24 267.6 30.9 128.2 
25-29 167.4 22.6 128.3 
30-34 102.5 16.0 86.8 
35-39 55.6 10.1 47.8 
40-44 18.9 3.7 15.9 
45-49 1.7 0.2 1.3 

Source: Statistics Sweden, 1985. (Befolkningsförändringar 1985,  
Sveriges Officiella Statistik, Del 3, Statistiska Centralbyrån, p. 87). 
 

 
Fig. 8.6 illustrates that fertility (like so many other demographic va-
riables) very much depends on marital status. Fertility for singles is 
very much different from married or steadily cohabiting couples.  
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Model fertility schedules representing the wide variability in the 
age-pattern of childbearing were developed by Coale and Trussell 
(1974). These have been used extensively in indirect estimation of 
fertility, a topic that we shall discuss later on. 

8.11 Mathematical models of fertility 
Because mathematical models have been essential for the further-
ance of the physical sciences, already at the time of John Graunt it 
was contemplated to model demographic phenomena by means of 
mathematical functions. Historically the gamma probability distri-
bution19

d)-c(x-e 1-kd)-(x
Γ(k)

kc Rd)k,c,g(x; =

 has served as a popular model of fertility schedules (Key-
fitz, 1968; Pressat, 1980). Here age-specific fertility is modeled 

 (8.9) 

x > d. In (8.9) parameter R signifies the total fertility rate. The para-
meter combination dk/cμ +=  is the mean age of the fertility sche-

dule, and /c2k2σ = the variance of the fertility schedule. Parameter 
d does not really signify the beginning of reproduction but can often 
be set at zero. In (8.9), it is common to use the approximation20

)
12k

1k(
e kk 

k
2π(k) Γ

+−
≈

  

 

The parameters R, c, k and d can be estimated simultaneously by 
means of non-linear fitting using a standard statistical package. To 
illustrate the goodness of fit provided by the gamma function, fig. 
8.7 shows the observed fertility schedule and the corresponding 
modeled schedule for Sweden in the year 2002. Estimated parame-

ters are 1.64,R̂ =   1.104ĉ =  and 33.69k̂ = with d fixed at 0.  

 

                                                      
19 Apparently, it was the Swedish economist Sven D. Wicksell who first used the 
gamma- function to model fertility schedules (see Keyfitz, 1968, for further details). 
20 Known as Sterling’s approximation. 



Demographic Methods for the Statistical Office Fertility 

Statistics Sweden 85 

Over time, several mathematical distribution functions have been 
used as models of the fertility schedule. Here we limit the discussion 
to the gamma distribution (8.9) and a model proposed by Brass 
(1968), which has been widely used by demographers working with 
fertility data from developing nations. The age-specific fertility rate 
at age x is 

b(x; α, β) = C 2x)(β α)(x −−  (8.10) 

where C, α and β are parameters. This is known as the Brass fertility 
polynomial. Parameter α determines the starting age at child bear-
ing, β the end of the reproductive period, β-α the length of the re-
productive period, and C the level of fertility21

15α =

. In many cases this 
third-degree polynomial has given a satisfactory fit to age-specific 
fertility, especially in developing nations with high levels of repro-
duction. As in the case of (8.9) the parameters in (8.10) can be esti-
mated using non-linear estimation in a statistical package. It is 
common, a priori, to let  and 50β =  in (8.10). It will be noted 

that since dx 
β

α

2x)-(β α)-(x∫  = I(α, β) with 

                                                      
21 Parameter C determines the level of fertility but is not the same as the total fertili-
ty rate. The Brass fertility polynomial was used to develop Brass’ method for esti-
mating infant mortality from census returns from mothers on the number of child-
ren ever born and surviving children (Brass, 1968).  
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−
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it follows that  

C = 1/ I(α, β). For α=15 and β = 50, C = 0.0000079967.  

Both (8.9) and (8.10) are convenient choices for graduating (or 
smoothing) age-specific fertility. They do not

8.12 The variance of the total fertility rate 

 however provide a 
deeper understanding of the reproductive behavior of women. 
Models like (8.9) and (8.10) serve many practical purposes e.g., in 
population projections as well as in indirect estimation of fertility.  

The asymptotic (large-sample) variance of the age-specific fertility 
rate xf

 
is  

Var( xf ) = x/Wxf
 

Because fertility rates also are asymptotically independent, it follows 
that  

Var(TFR) = Var(∑ xf ) ≈ )xVar(f∑  ≈ x/Wxf∑  (8.11) 

By means of simulations it is possible to see to which extent (8.11) 
also applies to small populations. Table 8.4 gives the age-
distribution for 4,998 women, their underlying age-specific fertility 
rates and expected number of children during a calendar year. The 
total fertility rate is TFR = 3.0 and the expected number of children is 
472. The simulations involve that at ages 15-19, 130 binomial trials 
are conducted with probability of success (live birth) p = 0.030. Simi-
larly, at ages 20-24, 788 binomial trials are carried out with p = 0.160 
and so on. The simulated rates are the simulated number of births 
divided by the number of women. When simulations have been car-
ried out for all 7 age groups, simulated rates (x)sf yield an estimated 

variance of TFR as given by (8.11). Given a reasonably large number 
of runs (simulations at ages 15-49), the variance of TFR can be esti-
mated by  

2) (Mean) TFR
N

1k
(TFR(k)(1/N)2S −∑

=
=  (8.12) 
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where TFR(k) references simulation k and TFR(Mean) is the mean 
for N simulations. This is illustrated by table 8.5 showing the results 
for ten simulation runs. It will be seen that each run produces its 
own TFR, and its own estimated standard deviation of TFR as de-
rived from (8.11). Table 8.5 shows simulated TFRs and correspond-
ing standard deviations provided by (8.11). The mean standard dev-
iation for the ten runs is SD = 0.16. The standard deviation of TFR 
estimated by (8.12) is SD* = 0.14. Even though the number of runs is 
10 the two estimates of the standard deviation are quite close. 

Table 8.4. Expected births for sample of women 

Age Women Fertility 
rate 

Expected 
births 

15-19 130 0.030 4 
20-24 788 0.160 126 
24-29 844 0.170 143 
30-34 796 0.130 103 
35-39 853 0.078 67 
40-44 921 0.030 28 
45-49 666 0.002 1 

Total 4,998 0.600 472 

 

Table 8.5. Results for 10 TFR simulation runs 

10 simulations TFR SD 

1 3.092 0.154 
2 3.031 0.157 
3 3.216 0.168 
4 2.999 0.157 
5 3.007 0.160 
6 2.926 0.138 
7 2.864 0.162 
8 3.181 0.156 
9 2.726 0.147 
10 3.050 0.154 

Mean 3.010 0.160 

SD* 

 

0.140 
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8.13 Population debates 
Although we discuss methods of analysis in this publication it is in 
place to mention as an aside that in the main there have been two 
major population debates. At the time of the French-German war 
(1870-71) it was widely held that France had been disadvantaged by 
low fertility (too few soldiers). This debate soon spread to Germany 
where it was also held that reproductive levels were too low for invi-
gorating the population. During the 1930s (with the exception of Great 
Britain) the European population debate built on fears that reproduc-
tive levels were too low for bringing about adequate social and eco-
nomic development. For this reason, families encouraged by allow-
ances were expected to increase childbearing. France was the first 
country to provide family allowances with the intention of stimulating 
increased reproduction. European population policies mainly build 
on fears that reproduction is too low (the aging society). In recent 
years, governments have increasingly encouraged people to continue 
working as long as possible in order to ease the strain on social securi-
ty funds. This, presumably, also compensates for low reproduction. 

After World War II a debate in the opposite direction took to the floor. 
Here the argument was that population growth was so high that in-
evitably it would lead to unprecedented misery. The terms “popula-
tion explosion” and “population bomb” were widely used22

                                                      
22 The terms population bomb and population explosion were introduced by the 
biologist John Ehrlich during the late 1960s. The position taken by the Roman Cath-
olic Church was that no child is ”too many” and that reproduction should not be 
controlled by government or international agencies. 

.  Popula-
tion debates concerning developing nations have given much more  
attention to reproductive levels than to reducing the frequently high 
levels of infant and child mortality. Life expectancies in many devel-
oping countries have remained low in comparison with industrialized 
societies. Furthermore, as noted, the debates have also detracted from 
the desirability of improving vital registration. As a result, in develop-
ing nations, vital registration systems rarely support estimating fertili-
ty and mortality. Instead recourse is made to indirect estimation and 
demographic and health surveys. It may be noted that such surveys 
rarely are taken at short regular time intervals for which reason they 
only bring forth time-series of limited use. It must also be noted that 
indirect demographic methods provide little insight into past and 
ongoing demographic processes. We shall return for a discussion of 
this.  
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9.0 Migration 
9.1 Internal and international migration 
Internal migration involves moves within a country. International 
migration involves moves across national boundaries. With respect 
to internal migration (migration from one region to another within a 
country), we know the risk populations (provided we have reliable 
census counts or population registers). In the case of international 
migration, the risk population underlying emigration is the national 
population whereas immigration has a poorly defined risk popula-
tion (immigrants may come from any country). In this chapter, we 
limit the illustrations to migration in and out of Sweden.  

9.2 Migration in and out of Sweden 
Fig. 9.1 shows emigration from Sweden between 1851 and 2002. It 
will be seen that emigration peaked during the late 1880s (reaching 
levels of about 50,000), and that from then on it declined to very low 
levels at the beginning of the 1940s. After World War II emigration 
began to increase reaching levels similar to those of the 19th century 
(table 9.1). 

Fig. 9.2 shows immigration into Sweden between 1875 and 2002. 
Immigration during the 17th century was obviously modest. It was 
not until after World War II that immigration surged reaching its 
highest peak (83,598) in 1994 (table 9.1). 

Fig. 9.3 shows crude rates of immigration and emigration (per 1,000) 
for the period 1875-2002. These are the number of immigrants (or 
emigrants) for a calendar year divided by the corresponding mi-
dyear population.  
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The difference between emigration and immigration is net-
migration. Conceptually emigration and immigration distinguish 
themselves from net-migration in the sense that while the former are 
observed processes, net-migration is a calculated difference between 
immigration and emigration.  

Fig. 9.3 shows net-migration for the period 1875-2002. It will be seen 
that the time-pattern of net-migration indicates that net-migration 
has increased more or less steadily over the period 1875-2002. It will 
also be seen that the time-pattern of net-migration is more easily 
interpreted (almost a linear increase over time) than the similar 
time-patterns of immigration and emigration.  

9.3 Statistics on migration 
What distinguishes data on migration from other kinds of demo-
graphic data is that even countries that boast highly reliable data on 
mortality and fertility may experience poor data on migration. There 
are many reasons for this. Precise enumeration of passengers that 
cross the borders between the nation states in the European Union 
or cross the federal state borders in the United States is simply not 
possible. From a practical point of view what sometimes but certain-
ly not always can be counted are work and residence permits issued 
to non-citizens. The number of such permits however usually un-
derstates the true number of persons entering a country in order to 
work and reside there. Moreover when foreigners who have re-
ceived residence and work permits eventually leave their host coun-
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Fig. 9.3. Net migration, both sexes: Sweden, 1875-2007
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try (perhaps they return home) it often happens that they are not

 

 
registered as leavers. In some cases this may spuriously increase the 
de jure population. This could increase estimated life expectancies 
and lower estimated fertility rates for areas with high densities of 
migrants. It is sometimes argued that such anomalies can be re-
solved by means of taking population censuses, instead of relying 
on registers. There does not seem to be much evidence supporting 
this view. Yet another aspect of migration needs to be mentioned. 
Migration is that of the demographic processes that changes the 
fastest (a volatile process). This is of importance in population pro-
jections for nations that receive large numbers of migrants and 
where the balance between in and out migration (net migration) is 
decisive for whether the population grows, stagnates or declines.  
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10.0 Population Projections 
10.1 The cohort component method 
Population projections serve two purposes. First, they illustrate how 
mortality, fertility and migration affect the future size and composi-
tion of the population. In that sense, population projections play an 
important diagnostic role. Second, population projections can be 
used to forecast the population. Here we limit the discussion to 
population projections serving as an important tool for understand-
ing structural changes in the population. The meaning of this will be 
explained below. In our discussion we also abstain from including 
migration in the projections, that is, the population to be projected is 
assumed closed

In the cohort component method males and females are projected 
independently of one another using the same projection mechanism. 
For this reason we let Let 

 to migration. 

(x)tP  be the midyear population aged x in 

year t for either males or females. This means that the population is 
made up of single-year age groups  

(0)tP , (1)tP , (2)tP , … , )(htP +   

where )(htP +  is the population aged h and above in year t. We as-

sume constant mortality and fertility23
xL.  are the person-years in 

the chosen life table. The probability of survival from age x to age 

x+1 (the projection probability) is xL / 1xLxπ += . Age-specific fer-

tility is xf .  

The population (1)1tP +  in year t+1 are the survivors from (0)tP  in 

year t. This means that  

(1)1tP(0)tP0π(0)tP
0L
1L

+==  

                                                      
23 As usual, by this we mean that mortality and fertility stay the same from year to 
year during the projection period. 
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so that generally, 

1)(x1tP(x)tP xπ(x)tP
xL

1xL
++==+  

are the survivors aged x+1 in year t+1 who were aged x in year t. For 
the open-ended age group h+, we have that those aged h in year t+1 
are the survivors of those aged h-1 in year t, that is, 

(h)1tP1)-(htP
1-hL

hL
+=  

Those aged h+ in year t+1 are those aged (h) plus those aged (h+1)+ 
in year t+1 whereby using the T-function 

]1)[(h1tP)(htP
hT

1hT
+++=++  

gives 

]1)[(h1tP(h)1tP)(h1tP +++++=++  

Remaining is the population aged 0 in year t+1. The total number of 
births in year t+1 is 

∑
=

+=+
49

15x xf (x)1tW1tB  

Boy infants are 0.52 1tB +  and the girl infants 0.48 ,1tB +  assuming a 

sex-ratio at birth of 105 boys per 100 girls. Adjusting for mortality, 
boy infants in year t+1 are 1tB  (0.5)ms 0.52 +  

and girl infants

1tB  (0.5)fs 0.48 +  where (x)ms  is the male and (x)fs  the female 

survival function. This illustrates the basic mechanism of the cohort 
component method by which a population is projected from year t 
to year t+1. Continuing, step-by-step, we can project the population 
any number of years into the future with the assumption that mor-
tality and fertility are constant either for calendar years or for longer 
periods. Several program packages are available for making such 
calculations (see e.g., Shorter, Pasta and Sendek, 1990). The package 
used here is Spectrum, developed by the Futures Group Interna-
tional in association with the Research Triangle Institute and funded 
by the US Agency for International Development (this package can 
be downloaded for free from the Internet).  
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10.2 Illustrative projection for Argentina, 1964 
In 1964, the population of Argentina was about 22 million. The life 
expectancy for males was about 65 and for females about 71 years. 
The total fertility rate was about 3.1 (Keyfitz and Flieger, 1971, pp. 
362-363). To illustrate the population projection technique, the popu-
lation is projected to 1974 with the fertility and mortality assump-
tions of table 10.1. It is assumed that TFR will drop from 3.1 in 1964 
to 2.0 in 1974 (a linear decline in fertility). Mortality is assumed con-
stant. The projection will display the effects of falling fertility on the 
Argentinean population. We do not take migration into account.  

Table 10.1. Assumptions for the projection24

Year 

 

TFR Life expectancy 

  Males Females 

1964 3.10 65 71 

1965 2.99 65 71 

1966 2.88 65 71 

1967 2.77 65 71 

1968 2.66 65 71 

1969 2.55 65 71 

1970 2.44 65 71 

1971 2.33 65 71 

1972 2.22 65 71 

1973 2.11 65 71 
1974 2.00 65 71 

 

Based on the mortality and fertility assumptions in table 10.1, the 
program package shows that the net reproduction rate declines from 
NRR = 1.4 to NRR = 0.9 during the period of projection. The crude 
birth rate declines from CBR = 23.4 to CBR = 15.6 per 1,000. The 
crude death rate increases from CDR = 8.3 to CDR = 9.3 per 1,000. 
Not realizing that the crude death rate depends on the age distribu-
tion of the population (as well as on the underlying life table), one 
might think that mortality has increased. However, life expectancies 
for males and females are fixed during the period of projection for 
which reason the increase in CDR is solely a reflection of the chang-

                                                      
24 A population forecast is always based on assumptions concerning mortality, 
fertility and migration during the projection period.  



Population Projections Demographic Methods for the Statistical Office 

96 Statistics Sweden 

ing age distribution. It is falling fertility that causes the change in 
age distribution. In 1964, the proportion aged below age 5 was 10.2 
percent. In 1974, it was 8.0 percent. The proportion of elderly has 
increased from 6.1 percent in 1964 to 7.7 percent in 1974. Table 10.3 
gives births and deaths per 1,000 during the period of projection. It 
will be seen that the declining total fertility rates is mirrored by a 
drop in the total number of births. These drop from 515,000 in 1964 
to 379,000 in 1974. In contrast, the number of deaths increases from 
183,000 in 1964 to 227,000 in 1974.  

Table 10.2. Demographic characteristics for Argentina during projec-
tion, 1964-74 

Year of projection 

Item 64 65 66 67 68 69 70 71 72 73 74 

TFR 3.1 3.0 2.9 2.8 2.7 2.6 2.4 2.3 2.2 2.1 2.0 

GRR 1.5 1.5 1.4 1.4 1.3 1.2 1.2 1.1 1.1 1.0 1.0 

NR 1.4 1.4 1.3 1.3 1.2 1.2 1.1 1.1 1.0 1.0 0.9 

            Crude rates 

CBR 23.4 22.5 21.6 20.8 20.0 19.2 18.4 17.7 17.0 16.3 15.6 

CDR 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 

            
Ages Age distribution in percent 

0-4 10.2 10.1 10.1 10.0 9.9 9.7 9.4 9.0 8.7 8.3 8.0 

5-14 19.7 19.6 19.5 19.3 19.2 19.0 18.9 18.9 18.7 18.6 18.4 

15-49 51.1 51.0 51.0 51.0 51.0 51.1 51.2 51.3 51.5 51.6 51.8 

50-64 64.1 64.1 64.1 64.2 64.3 64.5 64.7 65.0 65.3 65.6 65.9 
65+ 6.1 6.2 6.3 6.5 6.6 6.8 7.0 7.2 7.3 7.5 7.7 
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Table 10.3. Births and deaths per 1,000 and projected population in 
millions, 1964-74 

Year Births Deaths Population 

1964 516 184 22.04 
1965 503 188 22.35 
1966 489 192 22.65 
1967 476 197 22.93 
1968 463 201 23.19 
1969 449 205 23.43 
1970 436 210 23.66 
1971 422 214 23.87 
1972 408 218 24.06 
1973 394 223 24.23 
1974 379 227 24.38 

 

It is in place to make a few comments concerning which population 
is projected. Most countries, especially the Anglo-Saxon, make use 
of the midyear concept25

  

. This is the population that would be enu-
merated if a census were taken on July 1. In the European Union it 
has been decided to work with the population as of January 1 
(which is the same as the population on December 31 the previous 
year). Life tables and other demographic estimates are made using 
these end-of-year populations (the midyear population is then the 
average of the populations as per December 31 in the preceding year 
and the population a year later).  It should be borne in mind that 
midyear populations are used for estimation of age-specific mortali-
ty and fertility (lest indirect methods are used).  

                                                      
25 The reason for this is that the midyear population is an approximation to the 
exposure time associated with estimating age-specific mortality and fertility rates. 
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Table 10.4. Argentina and its demographic characteristics, 2003 

Population  

Both sexes 38,740,807  
Males 5,185,548 
Females 4,955,551 
Age distribution, percent  
0-14 26.2 
15-64 63.4 
65+ 10.4 
Rates  
Population growth rate, percent 1.05 
Crude birth rate, per 1,000 17.5 
Crude death rate, per 1,000 7.6 
Net migration rate, per 1,000 0.6 
Infant mortality rate, per 1,000 16.2 
Life expectancy at birth  
Both sexes 75.5 
Males 71.7 
Females 79.4 
TFR 2.3 

Source: United Nations Demographic Yearbooks. 
 

Changes of this nature (a changing age distribution) are called struc-
tural changes. Finally it should be mentioned that population projec-
tion packages often contain model fertility and mortality tables that 
can be used for projecting the population (Coale and Trussell, 1974). 
Here we have used the model west tables for projecting the Argen-
tinean population (Coale and Demeny, 1966). 

Table 10.4 gives estimates for Argentina in 2003. It is interesting to 
compare table 10.2 and 10.4. Notice, for example, that the proportion 
of elderly has increased over time, even though the total fertility rate 
has remained high.  

10.3 Midyear populations 
There is no country where censuses are taken once a year. Also, 
there are no countries where censuses produce absolutely accurate 
population counts; over and underenumeration occur in all census-
es. Besides that, since censuses often are taken 10 years apart, inter-
censal midyear populations are estimates that are more or less accu-
rate. In some countries population censuses are no longer taken. 
Examples are Denmark and Sweden which have replaced the popu-
lation census by continuous population registers. The long and the 
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short of it is that population counts whether they derive from cen-
suses or registers are incomplete. In some countries, this incom-
pleteness is of no serious consequence for the reliability and useful-
ness of demographic estimates. In others, censuses or registers may 
be so incomplete that only rough estimates can be obtained; there 
are, it must be emphasized, many countries where it is impossible to 
estimate life tables with reasonable precision due to faulty midyear 
estimates and incomplete death registration. Because in most situa-
tions the projected population has as its starting value a census 
enumerated population, it is important to give some thought to how 
accurate this count is and especially whether it is de facto or de jure. 

10.4 De jure or de facto populations 
In most developing nations censuses are taken on a de facto basis. 
Briefly, this involves that the census office before the census is taken 
divides the country into census enumeration areas. Maps showing 
the enumeration areas are then made. These are used to guide the 
enumerators to the households on census night (also called the cen-
sus moment) and the days following census night. Returns to the 
question who spent the census night in each household are then 
recorded in the census questionnaires. At the same time, it is also 
noted where the persons in each household normally reside so that 
returns on place of usual residence also are recorded. When census-
es are taken 5 or 10 years apart, cross-tabulations of place of usual 
residence at the last and present census then enable an understand-
ing of streams of migration between regions.  

In contrast, a census that counts the de jure population inquires 
which persons normally reside in each housing unit. This means 
that persons who normally reside in a household or housing unit 
but who are absent at the time of the census interview are listed in 
the census questionnaire. This sometimes leads to persons being 
listed who, in fact, normally reside in another country. As a result 
the de jure population may be bigger than the de facto population. 
Such errors may implant themselves in demographic estimates of 
mortality and fertility, especially if these are based on births and 
deaths recorded by the civil registration system. Hence, demograph-
ic estimates derived from the census may reflect if the population is 
counted on a de facto or de jure basis.  

Whether a census is taken according to the de facto or de jure prin-
ciple, it is important to bear in mind that usually the returns to the 
census questions are provided by proxies (proxy reporting). The 
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proxy is usually the head of the household (often an older member 
of the household). In other words, ordinarily the returns are not

10.5 Post enumeration surveys 

 ob-
tained by interviewing each individual in the household but by the 
head of the household or another member of the household. This 
may lead to omissions and other errors in the reporting. In countries 
where the census questionnaires are mailed to each household (and 
mailed back to the census office) errors of this nature are usually 
much smaller. When making population projections it is important 
to bear in mind which population is projected, de jure or de facto. 

It should also be noted that it is desirable to a conduct post-
enumeration survey after a census has been taken. The mechanism 
of such a survey is that after the census enumeration has taken 
place, a new enumeration is taken in a sample of enumeration areas. 
The two counts are then compared so that under or over-
enumeration can be assessed. Because post-enumeration surveys 
add to the costing of the census they are only taken occasionally. 
However, when a post enumeration survey has been taken some 
consideration should be given whether to make use of it when pro-
jecting the population. There is also the point to be taken that a cen-
sus, in all events, does not cover the total population but only a large 
sample of it. For this reason it might seem reasonable to always link 
the census operation with a survey that facilitates calculation of 
weights that can be used to adjust the enumerated population, so 
that it is in better accord with the actual population at the time of the 
census. 

To explain the meaning of a weight, consider a five-percent sample 
drawn from a population. A total in the sample must then be mul-
tiplied by the weight k = 1/0.05 = 20 in order to estimate the similar 
total for the population. It will be seen that a weight is the inverse of 
the sampling proportion. Of course, the sampling fraction in differ-
ent areas of the country may not be the same for which reason 
weights differ across sampling areas. The software package CsPro 
(Census tabulation program) issued by the US Census Bureau facili-
tates easy production of weighted tables. 

10.6 The exponential growth curve 
The exponential model of continuous population growth is 

 r te 0PtP =  (10.1) 
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To estimate population growth between times 0 and t, we rewrite 
(10.1) to obtain 

r = 
0P
tP

ln 
t
1  (10.2) 

from which we note that the time T required for the population to 
double its size, given a constant growth rate r, is 

r
0.7

r
0.693T ≈=     

Application of (10.2) to the population figures in table 10.3 gives an 

average growth rate r = 
22.04
24.38ln 

10
1 = 0.01 or 1 percent per year. 

Despite its mathematical simplicity, the exponential growth model is 
highly instructive. For example, if the growth rate r is positive, 
sooner or later the population explodes and becomes so big that it 
would exhaust all available resources required for human survival. 
On the other hand, if the growth rate is negative, eventually the 
population becomes extinct. It lies in the nature of things, then, that 
human populations to secure their own existence must grow during 
certain periods and decline during others. This is also what histori-
cal studies have shown (Cox, 1970, pp. 308-315).  
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11.0 Time Series 
11.1 Stochastic processes 
Fig. 9.1, repeated below for convenience, illustrates what is known 
as a time-series. Specifically, when a variable, such as out-migration, 
is recorded over time it forms a time-series. It is a common characte-
ristic of observed time-series that adjacent values depend on one 
another. Specifically, let nx,...,2x,1x be the values of a variable ob-

served at times t = 1, … , n then it is common to find high correla-
tions between neighboring values and, not infrequently, high corre-
lations between variables far apart in time26. Correlations of this 
kind are called auto-correlations

Fig. 9.1 (Chapter 9) suggests that while for any given year we can 
predict with reasonable precision out-migration for the following 
year, it would be difficult to predict out-migration several years into 
the future. Features of this nature are common in observed time-
series. We say that a process the history of which does 

.  

not uniquely 
determine its future is a stochastic process27

ty

. Out-migration, then, is 
an example of a stochastic process. From a formal point of view we 
write for a stochastic process. If this process is observed at times t 

= 0, … , n, we refer to ny,...,1y,0y  as a time-series.  

Sometimes a stochastic process admits multiple realizations, at other 
times it can only be observed once. For example, the time-series of 
out-migration from Sweden in fig. 9.1 can only be observed once; -- 
we cannot live through the period 1851-2002 twice. In contrast, fig. 
11.1 shows the ten temperature curves for the years 1953-62 (Chat-
field, 1999, p. 247). These may be viewed as 10 realizations of the 
same stochastic process.  

                                                      
26 It is typical of time-series that data depend on one another. Gottman (1981, p. 41) 
writes: 
 “Since it is so difficult to disassociate observed events from some sort of idea of occurrence 
in time, it seems remarkable that most of the body of statistical methodology is devoted to 
observations for which the temporal sequence is of no importance. Classical statistical analy-
sis requires independence, or at least zero correlation, among observations.”   
27 A process the future of which is entirely determined by its past history is called 
deterministic. 



Time Series  Demographic Methods for the Statistical Office 

104 Statistics Sweden 

 

 
Because many countries have reasonably long time-series of demo-
graphic data, the theory of stochastic processes has become increa-
singly important in the analysis of demographic phenomena, not 
least with respect to population projections (see e.g., Hartmann and 
Strandell, 2006, for important references).  
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Fig. 9.1. Out migration, both sexes: Sweden, 1875-2007
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11.2 Forecasting 
We can distinguish between two different processes, namely those 
whose futures are completely determined by their histories (their 
performance in the past) and those that are not. A process the future 
of which is completely determined by its history is called determi-
nistic. In contrast, as already noted, a process the future of which is 
not

This, of course, raises the question: What then is forecasting? In this 
respect, at least one aspect of sound forecasting can be mentioned, 
namely that we seek those features of a process that are the most 
time invariant, and make use of these to predict the future perfor-
mance of the process. Processes that lack this property are difficult, 
if not impossible, to predict with reasonable precision (although 
exceptions exist depending on how precise we want the forecasts to 
be). In the second place, we need to distinguish between long-term 
and short-term forecasts.  

 uniquely determined by its past is called stochastic (or probabil-
istic). Processes encountered in social science are decidedly stochas-
tic. We cannot, for example, foretell with exactness the future total 
fertility rate, even if we have a very long time-series of total fertility 
rates.  

11.3 Autoregressive time series 
Mathematical modeling plays an important role in forecasting. A 
simple and useful model is the first-order autoregressive time-series 
model 

te1tz λtz +−=  (11.1) 

In (11.1) t is time, λ  is a parameter, λ < 1, tz  a random variable 

with zero mean, and te  a normally distributed error with zero mean 

that is independent of previous errors. Specifically, for all t, te
 
is 

independent of 1-te , 2-te , …  . ... ,j-te  . Stated in words, every 

new observation is proportional to the previous one, except for the 
error term te  (also called an innovation). If μ)t(z E =  then (11.1) 

becomes 

teλ)(1μ 1tz λtz +−+−=  (11.2) 
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which is a more informative way of writing (11.1). In the case of 
(11.1), tz is expressed as μtz − , that is, as a centered variable

1λ =

. For 

, (11.1) becomes a random walk 

te1tz tz ++−=  

A simulation of the total fertility rate using (11.2),  t = 1, … 20, is 
given in fig 11.2. The start value is TFR = 2.1 = µ and 0.9λ = . The 
innovations te are independent and normally distributed with mean 

E( te ) = 0 and standard deviation eσ = 0.1 (a standard deviation 

similar to that for observed TFRs in Sweden, in recent years).  

 
 

The graph in fig. 11.2 is surprisingly similar to observed time-series 
of total fertility rates (see e.g., fig. 8.1), yet it is altogether stochastic. 
Two important features present themselves. First, it is a tantalizing 
thought that if we imagine fig. 11.2 to show an observed experience 
then, undoubtedly, we would seek substantive explanations for the 
movements (trends) in the curve. Yet this would be futile since the 
curve merely represents correlated random behavior, -- and nothing 
else. Second, fig. 11.2 gives a picture of what it looks like when ob-
servations are positively correlated. In contrast, fig. 11.3 shows in-
novations that are independent (a time-series of the innovations un-
derlying the graph in fig. 11.2). A time-series of independent innova-
tions is usually called white noise (fig. 11.3).  
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Fig. 11.2. First-order autoregressive simulation of the 
total fertility rate (TFR)
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Fig. 11.3. White noise

 

It is an important feature of (11.1 and 11.2) that both the mean and 

the variance of tz are time invariant. Letting 2
zσ)tVar(z =  and 

2
eσ)t(eVar = ,  it follows that 

2λ1

2
eσ

)tVar(z
−

=   (11.3) 

The model (11.1) creates a correlated data structure. The covariance 
between sections28

tz  and 1-tz  is, by definition,  

Cov( tz , 1-tz ) = E( tz 1-tz ) = E( te1tz2
1tz λ −+− ) = 2

zσ λ .  

The covariance between sections tz and ktz +  is 

Cov( tz , ktz + ) = 2
zσ kλ    (11.4) 

In effect, the correlation between tz and ktz + is 

kλ(k) ρ =  (11.5) 

                                                      
28 In a time series, an individual value at time t , ,tz

 
is known as a section. 
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which is also known as the autocorrelation function. In time-series 
analysis and in forecasting the autocorrelation function plays an 
important role since it explains how closely observations across time 
are knitted to one another. When autocorrelations are high, what 
happened long ago influences current values.  

Fig. 11.4 illustrates the dependence on past values in the case of the 
first-order autoregressive model (11.1). Time-series of total fertility 
rates often have autocorrelation functions similar to that in fig. 11.4 
with λ ≈ 0.9 so that current values are highly correlated with values 
some 4 or 5 years ago; a feature that enables relatively precise short-
term forecasts.  
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Fig. 11.4. Autocorrelation function for first-order auto-
regressive process with parameters λ = 0.9, 0.8 and 0.5
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It follows from (11.1) that (the centered variable) the expected value 
of the series k time units into the future is 

 E( )ktz + = tz kλ  (11.4) 

which is called a forecast with lead time k. From (11.4) it follows that 
E( )ktz + →  0 when k →  ∞. This means that even if the section tz
has strayed far away from its mean µ = 0, a long-term forecast based 
on tz is the mean value µ = 0. On the other hand, a short-term fore-

cast with lead time one would be 1tz~ + =  E( 1tz + ) = tz λ . At least in 

the case of the simple model (11.1), this illustrates the important 
difference between a short and a long-term forecast.  
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The mean square error plays an important role in forecasting. The 
mean square error is the squared expectation of the forecast minus 
the actual future value. Let ktz~ + be the forecast with lead time k.  

For (11.1) we have tz kλktz~ =+ (the forecast begins at time t+1). The 

mean square error is  

2)ktxktz~( E +−+ =  

2)ktztz kE(λ +− = )2
ktzktz tzk2λ2

tz 2kE(λ +++− = 

2
zσ2

zσ2k2λ2
zσ2kλ +− = ∞→

−
→

−
− kwhen 2λ1

2
eσ

2λ1

2
eσ

 )2kλ(1  

which tells us that the error involved with a short-term forecast is 
smaller than for a long-term forecast, as indeed we would also ex-
pect. The advantage of (11.1) is that it paves the way for an uncom-
plicated calculation of the mean square error of a lead time k fore-
cast. 

1.60

1.80

2.00

2.20

2.40

2.60

2.80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig.11.5. Four simulations of TFR for twenty-year period
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Another important concept is ergodicity. Let j
tz , j = 1, … , n, be n 

realizations of a process. To estimate the mean at time t we would 
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let ∑
=

=
n

1j

j
tz (1/n)tμ . The corresponding estimate for the variance at 

time t would be 2)tμ
n

1j

j
t(z (1/n)2

tσ −∑
=

= . If for a large number of 

realizations we were to conclude that μtμ =  and that 2σ2
tσ = , that 

is, regardless of time the mean value and variance of
 
are the same, 

then we would have what is known as a second-order stationary 
process. Such (stationary) processes share the property that the 
mean and variance can be estimated from just one realization. The 
technical term for this is that the process is ergodic29

Yet another aspect of (11.1) needs to be mentioned. From 

 with respect to 
mean and variance. Ergodicity is often more or less tacitly unders-
tood to hold in projections; a topic that is beyond discussion in these 
notes. 

1e0z λ1z += , 

 it follows that  

2e1e λ0z2 λ2z ++= , 3e2e λ1e 
2 λ0z3 λ3z +++=   

and, generally, that  

ne1-ne  λ...1e 
1-n λ0zn λnz ++++=  which means that nz , apart 

from a constant term, is generated by a series of n shocks or innova-
tions. These shocks are embedded in a realization of the process so 
that those that took place in the remote past only have an insignifi-
cant influence on its current value (because 1 λ < ). Innovations that 
took place in the recent past influence the process the most.  

Fig. 11.5 shows four realizations of (11.2) with µ = 2.1 and eσ = 0.1. 

For each realization the start value is 1z  = 2.1 (a time-series model of 

TFR as in fig. 11.1). The process (11.2) with the above-mentioned 
parameter settings is stationary. Each of the four realizations can be 
seen as a valid forecast of the process beginning at time t = 1. Stated 
differently, the process has infinitely many forecasts, some of which 

                                                      
29 The term ergodic is used especially by engineers. The epistemology of the word 
appears unknown. 
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would fall within high-likelihood-event horizons, some not. We could, 
of course, also assume that fig. 11.5 shows e.g., TFR for four differ-
ent countries over a twenty-year period. Even though the four time 
series are realizations of the same underlying process, undoubtedly 
analysts would come up with four different theories explaining their 
unfolding. This raises the question: “how good are we really at ex-
plaining demographic processes?”  

Seminal contributions to time series and notably autoregressive time 
series models were made by the Scottish statistician George Udny 
Yule (1871-1951) and the Russian mathematical statistician and 
economist Evgeny Evgenievich Slutsky (1880-1948). Markov chains, 
stochastic processes that are widely used in demographic research 
but not discussed here, were due to the Russian mathematician 
Andrey Andreyevich Markov (1856-1922). Another person of im-
mense historical importance is the American mathematician Norbert 
Wiener (1894-1964) who introduced the theories of stochastic 
processes in several areas of human interest. Students who take in-
terest in stochastic processes will run into those names time and 
again. Stochastic processes in demography appear among other 
things in the context of stochastic population projections. 
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12.0 Models in Demography 
12.1 The Brass logit survival model 
A demographic model serves the purpose of modeling something 
demographic. Over time, a plethora of models has been suggested not 
only with reference to an unfolding population (see Chapter 4 and 6 
discussing stationary and stable populations), but also in terms of 
age-specific mortality and fertility (see e.g., Hartmann, 1987, for a 
discussion of early mortality models).  

As an example, we begin by discussing a model proposed by Brass 
(Brass, 1968, 1971, 1975; Carrier and Goh, 1972). The reader is di-
rected to the demographic journals for further reading on mathe-
matical models in demography. The Brass model was developed 
during the 1960s in response to the need for estimating life expec-
tancies in the absence of complete vital registration and censuses of 
high coverage30.  During the 1950s it became clear that although the 
United Nations Organization had begun on a worldwide census 
program, mere census counts and age-distributions would not suf-
fice for understanding current levels and trends of mortality and 
fertility. Above all, it was difficult to estimate population growth. 
Meanwhile, Brass had developed a method for estimating infant and 
childhood mortality from mothers’ returns on their number of ever 
born and surviving children. Based on such estimates, the problem 
arose how to use it for estimating the life expectancy31. Although 
during the early 1950s an interesting technique had been developed 
by the United Nations for solving the problem32

                                                      
30 A census would have high coverage if underenumeration is less than 5 percent. In 
developing nations, even today, it is not uncommon that underenumeration is 
much higher than that.  

, Brass went further 
and gave a solution (the Brass logit survival model) that would even 
produce easily calculated population projection probabilities. Hence, 
his model also performed as an uncomplicated aid in making popu-
lation projections. As already noted, it is important to note that even 
today life expectancies for the majority of developing nations are 
estimated from data on infant and childhood mortality. Estimates of 

31 During the early 1950s, the United Nations developed the first model life tables 
for such estimation.  
32 Coale and Demeny (1966) expanded further on this idea when they developed the 
historical Princeton model life tables.   
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this nature, it must be emphasized, are often somewhat inauspi-
cious. However, because this is the common approach to estimating 
life expectancies in developing nations (due to incomplete vital reg-
istration), a sketch of the approach is given below. 

Brass noted that life table survival functions can be related in the 

sense that for a chosen standard survival function ,s
xl  another sur-

vival function xl  could be expressed as 

s
xllogit  βαxllogit +≈  (12.1) 

where 
xl

xl1
lnxllogit 

−
=  and α  and β  are parameters (Brass, 1971, 

1974; Hill and Trussell, 1977).  

Fig. 12.1 illustrates the logit relationship (12.1) using life tables for 
Swedish males in 1932 and 1942. It will be noted that the two curves 
are similar, except that they are at different levels. It is the purpose 
of the linear relationship (12.1) to move one curve on top of the oth-
er. Because (12.1) expresses a linear relationship, αand β can be es-
timated by the method of least squares (ordinary linear regression 
estimates). Using the 1932 survival function as a standard, least 

squares estimates are -0.323α̂ = and 1.062.β̂ =  This means that, on 
the logit scale, fitted (or modeled) survival for 1942 is 

s
xllogit   1.062-0.323xl̂logit +≈  (12.2) 

The negative value of -0.323α̂ =  transfers the 1932 logit curve down 
to the level of the 1942 logit curve. The parameter value 1.062β̂ = in-
creases the slope of the 1932 logit curve so that it is in harmony with 
the slope of the 1942 logit curve. The functionality of the parameters 
in (12.2) is that (i) α moves the standard curve up or down to the 
level of the logit curve to be modeled and that (ii) β  adjusts (twists) 
the slope of the standard curve so that it is agreement with the slope 
of the logit curve to be modeled. For a more accurate description of 
the parameters in (12.1), see chapter 14 on the logistic distribution. 
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Fig. 12.2 shows that the fitted logit curve very nearly coincides with 
the observed one for 1942. From (12.2) it follows that modeled sur-
vival is 

β)s
xl

s
xl1

(αe1

1
xl̂ −

+

=  (12.3) 

Using the above-mentioned parameter estimates, modeled survival 
for 1942 becomes 

1.062)
s
xl

s
xl1

(0.323-e1

1
xl̂

−
+

=  (12.4) 

The fit to the 1942 survival curve is very close even though the stan-
dard is much different. In fact, while the life expectancy for the 
standard is 63.0 it is 67.6 years for 1942 survival and 67.4 years for 
fitted survival. In practice, this means that (12.3) is a well-chosen 
method of projecting survival a few years into the future. It is worth 
noting that this Brass model is an example of one of the finest pieces 
of mathematical modeling in demography.  
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Fig. 12.1. Logit of survival for males: Sweden 1932 and 1942
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In some situations, it is appropriate to assume that β  = 1. In this 
event (12.1) reduces to a one-parameter model for which α  can be 
estimated from estimates of infant and child mortality (a technique 
that is described in the demographic literature on indirect estima-
tion).  
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Here we give a short version of the method. If β  = 1, then modeled 
survival is 

)s
xl

s
xl1

(αe1

1
xl̂ −

+

=  (12.5) 

from which it follows that  

s
x)/ls

xl-(1
x)/lxl(1

lnα
−

=  (12.6)  

(referred to as the log-odds ratio).  

If infant mortality is estimated33
1l10q −= at , and if s

xl  is a conve-

niently chosen standard survival function thought to be similar to 
the one to be estimated, then it follows from (12.6) that 

s
1/ls

0q
1/l0q

lnα̂ =  (12.7) 

Using the parameter estimate (12.7), estimated survival is 

)s
xl

s
xl1

(α̂e1

1
xl̂ −

+

=   

 

                                                      
33 This could be an estimate from a survey or from the population census using a 
variety of methods. 



Models in Demography  Demographic Methods for the Statistical Office 

118 Statistics Sweden 

 
 

Fig. 12.3 shows the result of fitting (12.5) to 1942 survival using 1932 
survival as a standard. The life expectancy for fitted survival is 67.2 
years. It should be noted though that such close fits not always can 
be obtained. The present example capitalizes on the standard having 
the same essential age-pattern of mortality as 1942 male survival. 

Estimating a life table from a single index, such as infant mortality, 
necessarily must involve a degree of error (sometimes a fairly large 
one), even if there is a high correlation between infant mortality and 
the life expectancy. Furthermore, this degree of error cannot be 
gauged statistically in terms of confidence limits. In the end, it is 
some sort of impressionistic fitting process.   
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12.2 Singular value decomposition 
As a prelude to discussing the Lee-Carter mortality model (usually 
abbreviated LC), it is necessary first to discuss singular value de-
composition. Any n-by-m matrix (a matrix with n rows and m col-
umns) can be written as a product of three matrices. Letting A be 
any n-by-m matrix, the factorization involves that  

A= TV S U  (12.8)  

U is an n-by-n orthonormal34

TV

 matrix, S is an n-by-m matrix with 
non-negative numbers in its diagonal and zeroes off its diagonal, 
and  denotes the transpose of an m-by-m orthonormal matrix 
V35 n)1,...,(k ku =. The orthonormal column vectors  in U, and col-

umn vectors ,hv  h = 1, … , m in V are called left and right singular 

vectors, respectively. The singular values of A are the square roots 

of the eigenvalues of ATA . The singular values is  in S (usually 

arranged in descending order) satisfy iu isiA v = , i = 1, … , m, so 

that each right singular vector is mapped onto the corresponding 
left singular vector with magnification factor is .  

A major advantage of SVD is that it often (but not always) enables 
computing good approximations to A. This is accomplished by neg-
lecting the smaller of the singular values in S. The approximation to 
A based on the first k (k < m) singular values is 

T
kvksku...T

1v1s1ukAA ++=≈  (12.9) 

The partial terms T
ivisiu  in (12.9) are called the principal images 

(Golub and van Loan, 1996; Hansen, 1987; Horn and Johnson, 1985; 
Strang, 1998). An early paper on SVD is due to Eckhardt and Young 
(1936). It is often adequate to make use of only the first principal 
image and let    

                                                      
34Two vectors a and b are orthonormal if their inner product 0 θ cos b ab a ==  

where θ is the angle between a and b. If two vectors a and b have scalar product 
0b a = , they are said to be independent, otherwise correlated. In a Hilbert space, an 

angle is an inner product. 
35 In what follows, we write V’ for the transpose of V. 
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T
1v1s1u1AA =≈

 (12.10) 
 
The LC model takes advantage of the approximation (12.10). Con-
sider the matrix  
 

A  = 
















14118
754
321

 

 
This matrix has singular value decomposition1 A = U S V’  
 

w ith U = 
















−−

−

0.420170.192690.88675
0.902360.014590.43074
0.095940.981150.16775

,  

 

S = 
















0.36800
00.6170
0022.011

  

and 

V=
















0.397050.564250.72386
0.81968-0.13680-0.55624

0.412880.81419-0.40819
.   

 
The diagonal of S holds the three singular values. Letting  
 

F = 
















000
000
0022.011

  

 
contain only the first singular value of S (the two remaining diagon-
al elements being zero in F), the matrix  

                                                      
1 Several statistical packages perform SVD. Here we have used STATA.  
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G=UFV’= A
14.12810.8567.967
6.8635.2733.870
2.6732.0541.507

≈
















 

 
provides a first principal image approximation to A. Compare G and A to 
see how well G approximates A.  

12.3 The LC model 
The Lee-Carter (LC model) takes advantage of time-series of central 
deaths rates. Consider a time-series of central death rates m(x; t) 
where x is age and t is time, then 

∑
=

=
m

1t
 t)(x; m log(1/m)(x) μ  (12.11) 

is the mean of the logged central death rates36

(x) μ t)(x; m logt)(x;μ −=

 at age x across m 
time-periods, and 

 (12.12) 

are the elements of the centered mbyω −−  matrix  

A = (  t)(x;μ ) ( ω0,...,x =  and t = 1, … , m). Here ω  ( m   ω ≥ ) denotes 
the highest age at which survival is considered. A can be factorized 
in agreement with (12.8), that is, as A = U S V’.  

Using first principal image approximation (12.10), the logged rate is 

(x) b (t)k  (1) ρ(x) μ  t)(x; m log +=  (12.13) 

(1) ρ  being the first singular value, k(t)  (t = 1, … , m) the first col-
umn vector in V and b(x) (x = 0, … , ω) the first column vector in U. 
Because the matrix determined by (12.12) is centered, it follows that

∑
=

m

0t
(t)k  = 0 (see e.g., Wilmoth, 1993 for a discussion of estimation 

principles). In demographic contexts (12.13) has become known as 
the Lee-Carter (LC) mortality model (Booth, Maindonald and Smith, 
2002; Carter and Prskawetz, 2001; Girosi and King, 2005; Lee and 
Carter, 1992). It should be mentioned that apparently the first speci-

                                                      
36 The logged central death rate is used in order to ensure that the modeled rate 
does not become negative. 
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fication of (12.13) as a model of age-specific mortality is due to de 
Gomez (1990) (Lee and Miller, 2000). Because b(x) and k(t) are unob-
servable, ordinary linear regression cannot be used directly. This is 
why ordinarily the model is estimated by means of singular value 
decomposition. In effect, LC is an SVD application that shares the 
properties of first image approximations. In effect, the LC model can 
only be used successfully when (a) time-series of central death rates 
are available and (b) over time, there is either a relatively uniform 
increase or decrease in age-specific mortality across all ages.  

The age-series b(x) in (12.13) is often highly serrated, as illustrated 
for Sweden (fig. 12.4). The serration reveals that the time changes in 
mortality only have followed the assumption underlying the LC 
model to an approximate extent; nevertheless the modeled life ex-
pectancies (fig. 12.5 showing results for 1980-2005) are relatively 
close to the observed ones. It should be noted that b(x) may attain 
negative values (this sometimes happens at older ages). The propor-
tionality factors k(t) for males and females drop almost linearly over 
time (fig. 12.6); a feature made use of in forecasting. Extrapolation of 
this type of mortality trend is usually accomplished by a random 
walk with drift 

thk1tktk ++−=
 

where th  is a zero mean normally distributed innovation37

2
hσ

 with 

variance and k a drift parameter that determines the average 

speed with which tk  changes, that is, 

k  =  t/Δtk Δ  = [ t(m)kt(0)k − ]/m 

where t(0) and t(m) are the first and last time points of the observed 

tk  series. It is important to realize that the variability induced by 

letting tk wander as a random walk with drift does not

                                                      
37 In a dynamic forecast, 

 account for 

the total temporal variability in mortality!  

th = 0. 
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12.4 Models, data and documentation 
No model is perfect. If indeed this were so, we would live in a world 
much different from the one we experience. A mathematical model, 
be it with few or many parameters, will never completely describe 
the complexities determining survival and other demographic as-
pects of human life. Demography is an academic discipline which, 
like any other, is subject to approximations. While some approxima-
tions may be better than others, nevertheless they remain approxi-
mations. This imposes the demand for sound judgment. It is always 
important, and indeed necessary, to appraise the results that derive 
from applications of various methods. No method, however inge-
nious, can repair incomplete and erroneous data. For this reason one 
must always assess how much analysis the collected data can sup-
port. This is often an initial aspect of demographic analysis, -- espe-
cially in developing nations.  
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13.0 Indirect Demographic  
Estimation 
13.1 Estimating infant and child mortality 
The actuarial estimation approach involves that both events and 
exposure time are available. In contrast, indirect demographic esti-
mation references a situation where we wish to estimate a life table 
or a fertility schedule, or perhaps some other rates, although the 
ordinarily required event-exposure data are not available. In mod-
ern times Brass (1968) was among the first to address these prob-
lems38

Over time several contributions were made to indirect estimation 
(see e.g., Brass, 1971; Brass et al, 1968; Carrier and Goh, 1972; Coale 
and Demeny, 1966; Coale and Trussell, 1974; Courbage and Fargues, 
1979; Feeney, 1980; Hartmann, 1991; Palloni, 1980; Sullivan, 1972; 
Retherford and Cho, 1970; Trussell, 1975; Hill and Trussell, 1977; 
United Nations, 1968).   

. As previously noted, his methods became known as indirect.  

In the case of child mortality, the solution involved asking women in 
a census or survey (a) how many live births they had ever had (ever 
born children before the time of the census or survey) and (b) how 
many of those are still alive (surviving children at the time of the 
census or survey).  The estimation method is outlined below using 
single-year reports from mothers on their deceased children . Given 
a uniform age-distribution of women, equally many women in each 
single-year age group, 

 x

α
(a)da f

x

α
a)da(xsq (a) f

(x)sD

∫

∫ −

=  (13.1)  

is the proportion of deceased children to be reported by women 
aged x if between ages α  and x they have constant fertility f(a) and 
their newborns have constant risk of dying before age x, denoted 

                                                      
38 Interestingly enough there are many traces of indirect estimation philosophy in 
Graunt’s works from the 17th century (Benjamin, Brass and Glass, 1963). 
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(x)sq . Brass assumed that mortality functions q(x) = 1-l(x) (the 

probability of dying before age x) at different levels of mortality are 
proportional. With this assumption the mortality function to be es-
timated can be expressed as 

 
q(x) = k (x)sq

 
(13.2) 

(at childhood ages this is a close approximation). If for conveniently 
chosen mortality (x)sq  and fertility f(a), model proportions of de-

ceased children are calculated, these can be used to estimate k in 
(13.2) so that estimated child mortality becomes  

=(x)q (x)sq k̂
 

(13.3) 

As an aid for understanding the rationale of the method, it will be 
noted that from (13.1) and the mean value theorem for integrals it 
follows that there is an age αxy0  withy −<<  such that 

(y)sq(y)sD =
 

(13.4)
  

for which reason the proportion of deceased children reported by 
women aged x is the same as the probability (y) sq for newborns to 

die before age y.  Given numerical specifications of (x)sq  and f(a), y 

can be found by interpolation. The proportionality factor k in (13.2) 
is usually estimated as  

(x)s /D(x) Hk̂ =
 

(13.5) 

where H(x) is the observed proportion of deceased children re-
ported by women aged about 20 years. In practice, k can be esti-
mated by least squares from reports H(18), … , H(22). This is the 
modus operandi of the method (see also Hartmann, 1991; Sullivan, 
1972 and Trussell, 1975 for variations of the original Brass method). 
The estimate (15.5) requires that the fertility of women also is esti-
mated. This will be illustrated below. It will be realized that this 
method necessarily must give no more than a rough approximation 
to infant and childhood mortality.  

First, it assumes that different cohorts of women have the same fer-
tility (which is rarely the case). Second, it is assumed that children’s 
mortality is independent of mother’s age. There is however a clear 
tendency for children with teenage mothers to have much higher 
mortality than children with older more mature mothers. Third, the 



Demographic Methods for the Statistical Office Indirect Demographic Estimation 

Statistics Sweden 127 

survival of children whose mothers are dead at the time of the cen-
sus is not reported in the census or survey (a phenomenon known as 
left-censoring in retrospective surveys); one may suspect that such 
children have elevated mortality risks. Fourth, the fertility function 
f(a) in (13.1) can only be inferred indirectly and, of course, introduc-
es yet another dimension of imprecision in estimated mortality. 
Fifth, the estimated mortality function will rarely apply to the time 
of the census or survey. In the case of falling mortality, the estimate 
would refer to a time point before the census (Brass, 1975; Feeney, 
1980, 1991; Palloni, 1980). Nevertheless, whether data reference cen-
suses or surveys this is the general method by which infant and 
child mortality is estimated for the majority of developing nations, -- 
even today. 

13.2 Indirect estimation of fertility 
Indirect estimation of fertility involves making use of the parity in-
formation obtained from a census or survey. The parity at age x is 
the mean number of children women have given birth to at that age. 
We assume that all women considered in the estimation process 
have the same fertility schedule39

af { }. Given a uniform age-

distribution of women, the mean parity for women aged 15-19 is 

/518f172f163f154f
19

15 jf
2
1

1P 










++++∑= , (13.6) 

for women aged 20-24 

/523f222f213f204f
24

20 jf
2
119

15 jf2P











++++∑∑ += , (13.7) 

and for women aged 25-29 

 /528f272f263f254f
29

25 jf
2
124

15 jf3P











++++∑∑ +=  (13.8) 

If women are asked if they have given live birth to a child during the 
12 months before the census, the returns can be used to estimate 
age-specific fertility rates. Women aged x in the census are assumed 

                                                      
39 It would perhaps be more appropriate to assume that the population is station-
ary, that is, mortality and fertility are time-invariant (and that the population is 
closed to migration).  
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to be aged x+0.5 years on the average. Because those who gave birth 
did so, on average, half a year earlier, age-specific fertility from the 
returns corresponds to exact ages 15, 16, … , 49. Adjustment for this 
half-year displacement however is not very important.  

The general experience with retrospective reports of this nature is 
that they underestimate age-specific fertility (not all births are re-
ported). However, if it is assumed that underreporting of births is 
independent of mother’s age, then estimated age-specific fertility 
can be adjusted so that it is in agreement with the census reported 
mean parities.  

To this end, let aĝ be the age-specific fertility rate at age a, as esti-

mated from births during the 12 months before the census. Fitting a 
Brass-fertility polynomial (or some other convenient expression) to 

aĝ  gives new graduated rates af̂ . Replacing jf  in (13.6)–(13.8) by af̂
 

gives estimated parities 3 2, 1,  i ,iP̂ =  corresponding to the births 

reported for the 12 months before the census. Letting 3 2, 1,  i  ,iP~ =  

be the mean parities reported in the census (from children ever 
born), ratio estimates  

iP̂/iP~iγ̂ =  (13.9) 

i = 1, 2, 3 can be obtained.  

In practice, the ratios 2γ̂  and 3γ̂  are used to estimate current fertility 

(fertility at the time of the census). This means that estimated cur-
rent fertility, if based on the census reported mean parities for wom-
en aged 20-24, is 

af̂ 2γ̂aĥ =  (13.10) 

If based on the census reported mean parities for women aged 25-29, 
it is 

af̂ 3γ̂aĥ =  (13.11) 

Sometimes one lets 

af̂  γaĥ =  (13.12) 

with  /2)3γ̂2γ̂(γ +=
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be the estimate of current fertility. As noted, age-specific fertility 
estimated in this manner is based on the assumptions that women 
have a uniform age-distribution and share the same fertility at least 
up to age 30. It is also assumed that births are equally underreported 
by women at all ages. Nevertheless, in practice, there are always 
changes in fertility from one year to the next, and the age-
distribution of women is never uniform. In addition, it is not very 
likely that births during the 12 months before the census are under-
reported independently of age. In consequence, age-specific fertility 
estimated in this manner may be rather approximate. The above-
mentioned estimation method is due to Brass and usually referred to 
as the P/F-method (Brass et al, 1968).  
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13.3 An application to the 2005 LAO PDR popula-
tion census 
Indirect estimation of child mortality and fertility is illustrated be-
low using data from the 2005 Lao PDR population census. Table 13.1 
gives children ever born and surviving children. Usually these sta-
tistics are given by five-year age groups of women. Here however 
are shown the returns from the census by single-year ages of wom-
en. This is advantageous because, as we shall see below, five-year 
age-groups may disguise important features of such data. Fig. 13.1 
shows the proportions of deceased children by age of mother. As 
previously noted, infants and children with teenage mothers often 
(if not always) have much higher mortality than children with older 
mothers. This is exemplified by fig. 13.1. Infant mortality is esti-
mated at 70 per 1,000 live births (the average of the proportions de-
ceased children reported by women aged 20-24).  

This is not a true Brass estimate, however data on ever born and 
surviving children are often somewhat incomplete and for this rea-
son do not uphold application of a refined estimation technique, 
which almost always builds on assumptions that are unlikely to be 
met. In the case of Lao PDR the data do not seem to support a finer 
estimate of infant mortality. Table 13.2 shows reported births during 
the 12 months before the census, reporting women by age, and esti-
mated age-specific fertility rates.  

The total number of recorded births is 114,442 and the total fertility 
rate (TFR) is estimated at TFR = 2.62. Previous estimates were TFR = 
5.5 in the 1995 Lao PDR Population Census and TFR = 5.0 from the 
2000 Lao PDR Reproductive Health Survey. The resulting TFR = 2.62 
is obviously too low, thus reflecting considerable underreporting of 
births in the census. The total census population being 5,621,982, the 
crude birth rate is estimated at CBR = 114,442/5,621,982 = 20.4 per 
1,000 which, consequently, is also too low. 

In order to calculate age-specific fertility rates corresponding to ex-
act age x+0.5, adjusted rates can be obtained as a mean of rates at 
ages x and x+1. The adjusted rates facilitate calculation of mean 
parities corresponding to the reported births during the 12 months 
before the census. These mean parities are shown in table 13.3 to-
gether with the census reported mean parities as well as the ratios 
between the two kinds of parities. 

 



Demographic Methods for the Statistical Office Indirect Demographic Estimation 

Statistics Sweden 131 

Table 13.1. Children ever born and surviving children, 2005 Lao PDR 
Population Census 

Age Women Children 
ever 
born 

 Children 
surviving 

Proportion 
surviving 
children 

Proportion 
deceased 

children 

15 72,672 1,022 898 0.8787 0.1213 
16 64,408 2,721 2,461 0.9044 0.0956 
17 58,632 5,949 5,445 0.9153 0.0847 
18 71,979 15,877 14,616 0.9206 0.0794 
19 55,849 18,876 17,508 0.9275 0.0725 
20 71,247 44,189 40,864 0.9248 0.0752 
21 45,675 30,869 28,793 0.9327 0.0673 
22 53,667 50,285 46,969 0.9341 0.0659 
23 45,847 50,797 47,485 0.9348 0.0652 
24 44,935 59,849 55,950 0.9349 0.0651 
25 58,017 96,971 89,807 0.9261 0.0739 
26 38,931 71,212 66,272 0.9306 0.0694 
27 38,495 78,111 72,581 0.9292 0.0708 
28 45,904 109,606 100,916 0.9207 0.0793 
29 36,983 92,859 85,895 0.9250 0.0750 
30 55,777 160,412 145,892 0.9095 0.0905 
31 30,093 85,798 79,302 0.9243 0.0757 
32 36,759 113,267 104,141 0.9194 0.0806 
33 30,221 96,654 88,716 0.9179 0.0821 
34 30,630 104,649 95,611 0.9136 0.0864 
35 45,012 164,880 148,935 0.9033 0.0967 
36 31,052 117,195 106,159 0.9058 0.0942 
37 28,438 109,638 99,120 0.9041 0.0959 
38 35,008 142,924 128,288 0.8976 0.1024 
39 25,852 107,243 96,314 0.8981 0.1019 
40 41,255 178,141 156,719 0.8797 0.1203 
41 21,888 94,013 84,186 0.8955 0.1045 
42 26,292 116,943 103,625 0.8861 0.1139 
43 21,843 98,991 87,759 0.8865 0.1135 
44 22,254 102,191 90,306 0.8837 0.1163 
45 34,550 158,078 137,135 0.8675 0.1325 
46 20,424 95,254 83,131 0.8727 0.1273 
47 19,076 88,553 76,980 0.8693 0.1307 
48 22,849 107,039 92,097 0.8604 0.1396 
49 16,399 76,192 65,521 0.8599 0.1401 

Source: Central Statistical Bureau of Lao PDR. 
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Table 13.2. Births during the 12 months before the census and age-
specific fertility, 2005 Lao PDR population census 

Age Women Births f(x) Age Women Births f(x) 

15 72,672 430 0.0059 33 30,221 2,713 0.0898 
16 64,408 1,151 0.0179 34 30,630 2,617 0.0854 
17 58,632 2,299 0.0392 35 45,012 3,735 0.0830 
18 71,979 5,186 0.0720 36 31,052 2,172 0.0699 
19 55,849 5,146 0.0921 37 28,438 1,863 0.0655 
20 71,247 8,965 0.1258 38 35,008 2,148 0.0614 
21 45,675 5,575 0.1221 39 25,852 1,358 0.0525 
22 53,667 7,357 0.1371 40 41,255 1,847 0.0448 
23 45,847 6,341 0.1383 41 21,888 846 0.0387 
24 44,935 6,366 0.1417 42 26,292 852 0.0324 
25 58,017 8,471 0.1460 43 21,843 630 0.0288 
26 38,931 5,499 0.1412 44 22,254 511 0.0230 
27 38,495 5,095 0.1324 45 34,550 696 0.0201 
28 45,904 6,141 0.1338 46 20,424 322 0.0158 
29 36,983 4,483 0.1212 47 19,076 227 0.0119 
30 55,777 6,497 0.1165 48 22,849 272 0.0119 
31 30,093 2,943 0.0978 49 16,399 161 0.0098 
32 36,759 3,527 0.0959     

Source: Central Bureau of Statistics, Lao PDR.  
 

0,0600

0,0700

0,0800

0,0900

0,1000

0,1100

0,1200

0,1300

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 13.1. Proportion deceased children by age of mothers, 
2005 Lao PDR population census
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Table 13.3. Census reported mean parities, mean parities correspond-
ing to births 12 months before the census and their ratios, 2005 Lao 
PDR population census 

Age CEB 
parity 

12 
month 
parity 

Parity 
ratio 

Age CEB 
parity 

12 
month 
parity 

Parity 
ratio 

15 0.014 0.006 2.36 31 2.851 1.778 1.60 
16 0.042 0.026 1.61 32 3.081 1.872 1.65 
17 0.101 0.068 1.49 33 3.198 1.963 1.63 
18 0.221 0.137 1.61 34 3.417 2.049 1.67 
19 0.338 0.233 1.45 35 3.663 2.129 1.72 
20 0.620 0.349 1.78 36 3.774 2.201 1.71 
21 0.676 0.476 1.42 37 3.855 2.267 1.70 
22 0.937 0.610 1.54 38 4.083 2.327 1.75 
23 1.108 0.748 1.48 39 4.148 2.380 1.74 
24 1.332 0.890 1.50 40 4.318 2.425 1.78 
25 1.671 1.034 1.62 41 4.295 2.463 1.74 
26 1.829 1.174 1.56 42 4.448 2.496 1.78 
27 2.029 1.309 1.55 43 4.532 2.525 1.79 
28 2.388 1.439 1.66 44 4.592 2.548 1.80 
29 2.511 1.563 1.61 45 4.575 2.568 1.78 
30 2.876 1.676 1.72 46 4.664 2.584 1.80 

 

The average ratio at ages 25-30 is 1.62. Hence, upgrading the age-
specific fertility rates by a factor of 1.62 adjusts them so that they are 
in reasonable agreement with the children ever born parities at ages 
25-30. The sum of the adjusted age-specific fertility rates gives TFR = 
4.2.   Hence, with this method we would estimate the total fertility 
rate in Lao PDR around 2005 to be TFR = 4.2.  

Fig. 13.2 shows the unadjusted parities obtained from births before 
the census (Parity12), and from children ever born (CEB). 
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It will be realized that since fertility obviously is falling in Lao PDR 
that the basic assumptions underlying the estimation method are 
unmet. Hence, the estimated total fertility rate as well as the infant 
mortality rate are approximate.  

Fig. 13.3 shows the percent age-distribution for males and females in 
the census. It will be noted that evidently there has been a drop in 
fertility in the recent past. Unfortunately, there is often more  
underenumeration in censuses of infants and children than of the 
adult population, a feature that makes it difficult to assess the true 
magnitude of the apparent drop in fertility. In addition, it will be 
noted that there is considerable age-heaping.  
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Fig. 13.2. Parities estimated from births during the 12 
months before the census and from the parities in the 

census 

Census parities 12 months before census parities
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Fig. 13.3. Percent age-distribution by sex, 2005 Lao PDR 
population census
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14.0 Logistic Regression 
14.1 The logistic distribution 
The logistic distribution function has served many prominent uses 
in statistics and demography. It bears close resemblance to the nor-
mal distribution but is easier to work with because of its simple ma-
thematical expression. A random variable X which can attain values 
between minus and plus infinity with distribution function 

P(X < x) = F(x) = 
 /bm)(x-e1

1
−+  

(14.1)  

is logistically distributed. This distribution has mean value μ = m 

and variance 2b2π
3
12σ = . It follows that  

P(X> x) = 1 – F(x) =  /bm)(x-e1

 /bm)(x-e
−+

−

 
(14.2) 

so that 

b
mx

b
1

(x) F-1
(x) Fln  (x) Flogit  −==

 
(14.3) 

This means that the log-odds ratio for the logistic distribution is a 
linear function of the argument x (the logistic distribution function is 
the only distribution with this property). If we let  

x-e1

1(x)sF
+

=
 

(14.4) 

then 

(x)sFlogit  
b
1

b
m (x) Flogit  +−=

 
(14.5) 

so that the logit of a logistic distribution function with parameters m 
and b can be expressed as a linear function of the logit of a standar-
dized logistic distribution (zero mean and unit variance). Relation 
(14.5), of course, could also be written 

(x)sFlogit  βα (x) Flogit  +=  (14.6) 
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with m/bα −= and 1/b.β =  Replacing F(x) and (x)sF  in (14.6) by xl

and s
xl  in (12.1), respectively, we arrive at the Brass logit survival 

model. The survival functions xl and s
xl  are now treated as if 

though they were logistic (a pseudo-logistic relationship).  

It is now apparent that parameter α  in (12.1) reflects not only the 
mean but also the variance of the distribution of deaths in xl (rela-

tive to s
xl ). It is also clear that β  in (12.1) is inversely proportional to 

the variance of the distribution of deaths in .xl  Hence, when the 

variance of the distribution of deaths in xl  increases relative to s
xl , 

then β  < 1. This also leads to a decrease in the life expectancy of xl . 

Conversely, if the variance of the distribution of deaths in xl  is 

smaller than in s
xl  then β  > 1 and this increases the life expectancy; 

more people survive to an age in the neighborhood of the life expec-

tancy than in the standard survival function s
xl . Hence, as previous-

ly noted, β  controls the relationship between modeled child and 
adult mortality relative to the chosen standard survival function. 

14.2 Regression with covariates 
If the probability of an event is p, then the corresponding  

odds(p) = p/(1-p) (14.7) 

so that ln [odds(p)] = logit p. Odds indicate how many successes 
there are per failure. When the probability of success is p = 0.5, odds 
are one. Logits have the convenient property that they are symme-
trical40

p = odds(p)/(1+odds(p)) 

, that is, logit(p) = -logit(1-p). The probability p expressed in 
terms of odds is  

Hence, if the odds for an event are 2 to 1, the probability of success 
is p = 2/3. 

                                                      
40 Probabilities are not symmetrical. Logits however are symmetrical because logit p 
= - logit (1-p). 
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The general model for logistic regression is  

nxnβ...1x1β0β
e1

nxnβ...1x1β0β
e  )β|1P(Y

+++
+

+++
==  (14.8)  

which gives the probability that the response variable Y is 1 subject 
to the covariate vector )nx,...,1(xx =  and parameter vector

)nβ,...,0(ββ = .  

This model is easily estimated using a standard statistical package 
(maximum likelihood estimation). It follows from (14.8) that 

jx
n

1j jβ0ββ)|1(Y Plogit ∑
=

+==  

The covariates need not be dichotomous, for example, continuous 
age could be a covariate. The dependent variable however is a zero-
one variable

Logistic regression does not predict the value of the dependent vari-
able; rather, it gives the expected probability that the dependent 
variable is unity subject to the settings of the covariates and their 
estimated parameters.  

.  

It should be noted, incidentally, that both in the case of logistic re-
gression as well as in the case of proportional hazards models (not 
discussed here), the question may arise if a covariate should be de-
leted from the estimated model if its corresponding coefficient is not

Illustrative examples of logistic regression are usually given in the 
manuals for statistical packages. Both SPSS and Stata have explana-
tory texts and examples.  

 
statistically different from zero. The answer to this moot question is 
that it depends on the intellectual and substantive aspects of the 
model, an issue beyond discussion here.  
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15.0 Differentiation and Integration 

15.1 Differentiation 
Adding, subtracting and multiplying numbers were the main ma-
thematical operations until the end of the 17th century. When Galileo 
conducted his experiments in Pisa, a new approach to science (phys-
ics) was born. To formulate new theories  it became necessary to 
extend the mathematical knowledge of the day. This was done by 
Gottfried Wilhelm Leibniz41

Suppose a car has driven a distance Δs during the time interval 

 (1646-1716) and Isaac Newton (1642-
1728) who, independently of one another, developed the fundamen-
tals of differential and integral calculus. This development in ma-
thematics paved the way not only for modern physics but also for 
the creation of actuarial mathematics from which demography has 
borrowed many of its standard methods. We begin by discussing 
differentiation by means of a heuristic high school example.  

Δt,tτt +≤≤  0Δt > . The average speed of the car across this time 

interval is v(Δt)
Δt
Δs

= . However, what happens if we ask what the 

speed of the car is at a point in time τ , Δttτt +≤≤ ? We know how 
to deal with an average across a time interval, but we do not know 
how to deal with an average valid for a time point. We let s(t) de-
note the distance it has traveled at time t, t > 0. During a small time 
interval Δt the car travels the distance Δs = s(t+ Δt ) - s(t). As before, 
its average speed during this time interval is  

Δs/Δt = [s(t+Δt ) - s(t)]/Δt (15.1) 

Suppose we make Δt very small. From a practical point of view, we 
could then argue that (15.1) is an average speed that is valid for the 
time point τ. It is possible for us to come closer to the answer by as-
suming that s(t) is a convenient function of time. As an example, 
suppose  

s(t) = 2 t  (15.2) 

                                                      
41 Leibniz discovered calculus independently of Newton, and it is his notation that 
is used. He discovered the binary system which is used in modern electronic com-
puters. He made major contributions to physics and technology. 
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Inserting (15.2) in (15.1) we get 

Δt
(t) sΔt)(t s −+ = 

Δt

2t2t)Δ(tΔ2t 2t −++
= 

Δt

2t)Δ(tΔ2t  +
= 2tΔt2t →+  when Δt approaches 0 (15.3)  

This shows that for a well-behaved choice of function s(t), we can 
answer the question: what is the speed of the car at time τ?  In our 
example, the speed at time τ is the limit v(τ) = 2τ obtained when Δt 
approaches 0.  

What we have accomplished mathematically (without knowing it) is 

that we have differentiated the function s(t) 2t= and found the re-

sult to be 2t
dt
d = 2t.  

More specifically, the derivative of a function g(x) at the point 0x
 
is 

the limit
h

)0(x gh)0(x g

h
(h) Δg −+

=  as 0h →   (15.4) 

which is its speed of change for g in a neighborhood of 0x . We also 

say that the function g is differentiable in the point 0x  with differen-

tial quotient )0(x g
dx
d = g’( 0x ) (15.5) 

The theory of differentiation is considerable. Only a few additional 
comments can be made here.  

First, a differential quotient, or derivative, says something about 
how fast a function changes in a neighborhood of its argument. In-
deed, we can rewrite (15.5) so that dx )0(xg')0(x dg =  which says 

that the amount of change for g in a neighborhood of 0x  is the de-

rivative of the function in 0x  times a small (infinitesimal) increment 

dx. Second, differentiable functions change smoothly; they do not 
jump wildly from point to point but have a property called continui-
ty. We leave the topic of differentiation here and refer to e.g., Pe-
nrose (2005) who gives a good description of continuity, differentia-
bility and smoothness. 
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15.2 Integration 
An integral is a sum of many small (infinitesimal) amounts. To illu-
strate this, suppose we wish to calculate the area underneath the 

curve y = 2x  on the open interval 0 < x < 1. This area is denoted  

A = .
1

0
dx 2x∫  We apply a numerical approach because we do not 

know, as of yet, how to evaluate the area A using a mathematical 
expression.  

 

Divide the x-axis between 0 and 1 into small portions of equal length 
w, say. This division may be denoted 1nx,...,1x,0x −  where 

wix1ix =−+ . Calculate f(x) for the midpoint of each such interval. 

To this end, we use ih  =  [ )1i(x f)i(x f ++ ]/2.  Then, for each inter-

val, calculate ih  w (this is the area of a rectangle with base length w 

and height ih ) and sum all contributions ih  w. Letting w = 0.025, 

the sum is A = 0.33344 (table 15.1). The true value is A = ∫
1

0
dx 2x = 

0.33333. Approximations to integrals can be found numerically, as 
illustrated in table 15.1.  
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Table 15.1. Numerical integration of f(x) = 2x between 0 and 1 

x f(x) ih  ih w x f(x) ih  ih w 

0.000 0.00000 0.00031 0.00001 0.525 0.27563 0.28906 0.00723 
0.025 0.00063 0.00156 0.00004 0.550 0.30250 0.31656 0.00791 
0.050 0.00250 0.00406 0.00010 0.575 0.33063 0.34531 0.00863 
0.075 0.00563 0.00781 0.00020 0.600 0.36000 0.37531 0.00938 
0.100 0.01000 0.01281 0.00032 0.625 0.39063 0.40656 0.01016 
0.125 0.01563 0.01906 0.00048 0.650 0.42250 0.43906 0.01098 
0.150 0.02250 0.02656 0.00066 0.675 0.45563 0.47281 0.01182 
0.175 0.03063 0.03531 0.00088 0.700 0.49000 0.50781 0.01270 
0.200 0.04000 0.04531 0.00113 0.725 0.52563 0.54406 0.01360 
0.225 0.05063 0.05656 0.00141 0.750 0.56250 0.58156 0.01454 
0.250 0.06250 0.06906 0.00173 0.775 0.60063 0.62031 0.01551 
0.275 0.07563 0.08281 0.00207 0.800 0.64000 0.66031 0.01651 
0.300 0.09000 0.09781 0.00245 0.825 0.68063 0.70156 0.01754 
0.325 0.10563 0.11406 0.00285 0.850 0.72250 0.74406 0.01860 
0.350 0.12250 0.13156 0.00329 0.875 0.76563 0.78781 0.01970 
0.375 0.14063 0.15031 0.00376 0.900 0.81000 0.83281 0.02082 
0.400 0.16000 0.17031 0.00426 0.925 0.85563 0.87906 0.02198 
0.425 0.18063 0.19156 0.00479 0.950 0.90250 0.92656 0.02316 
0.450 0.20250 0.21406 0.00535 0.975 0.95063 0.97531 0.02438 
0.475 0.22563 0.23781 0.00595 1.000 1.00000   
0.500 0.25000 0.26281 0.00657     

      Sum A =  0.33344 

 

We mention without proof that the derivative of f(x) nx=  with re-

spect to x is 1nn xnx
dx
d −=

 
(15.6) 

a formula you will be using many times.  

It can be shown that 

1n

1na
1n

1nb
b

a
1n

1nxdx 
b

a

nx
+

+
−

+

+
=













+

+
=∫

 

(15.7) 

which, in our example, gives
3
1

1

0
3

3xdx 
1

0

2x =











=∫ . 
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Generally, to find the integral ∫
b

a
dx (x) f  we seek a function F(x) such 

that its derivative is 
dx
d F(x) = f(x). The function F(x) satisfying this 

requirement is called a primitive function for f(x). Hence, generally, 

[ ] (a) F(b) Fb
a(x) F

b

a
dx (x) f −==∫  (15.8) 

High school textbooks on mathematics give the main rules for diffe-
rentiation and outline a number of primitive functions used in prac-
tical situations. The interested ready may peruse Cramer (1945) 
which gives a very readable introduction to integration.  
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