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Three factors to signal nonresponse bias Preface 

 

Preface 
Nonresponse is an increasing problem threatening the validity and 
thrust in sample survey statistics. The problem has to be addressed 
in every part of a survey design in order to maintain and increase 
the usefulness of statistics. One important counteraction is improved 
utilization of available auxiliary information. Such information has 
traditionally been used in the design step of a survey, e.g. for 
stratification, and in the estimation step for reducing estimator 
variance. Using the calibration estimator, auxiliary information can 
also be a powerful tool for reducing the bias introduced in estimates 
due to nonresponse, which has been shown by the author in earlier 
contributions. One delicate problem for application of the calibration 
estimator is the choice of auxiliary information. This paper 
contributes with new results and insights on this problem and 
provides with new practical tools improving the ability to produce 
valid statistics under non-response. 

 

Statistics Sweden, March 2011 
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Abstract 
The methods for nonresponse bias adjustment weighting used in 
sample surveys at Statistics Sweden rely on two features: (1) the 
availability of many potential auxiliary variables derived from 
several administrative registers; (2) the use of a bias indicator to 
identify the auxiliary variables likely to be the most efficient ones. 
As a consequence of (1), many potential auxiliary vectors can be 
constructed. Every choice of vector defines a calibration estimator. 
Its remaining bias depends on the strength of the auxiliary vector. 
The theoretical basis of the bias indicator is explained. It serves to 
compare different auxiliary vectors, in order to settle on one that can 
be used in statistics production with good prospects of significant 
reduction of bias in most of the survey estimates. We express the 
indicator in linear algebra terms as a product of three factors, shown 
to reflect three familiar statistical concepts. We focus on the 
important case of categorical auxiliary variables, each defined in 
terms or two or more properties or traits, as when “Age” is defined 
by the traits “Young”, “Middle aged” and “Elderly”. Together, the 
available auxiliary variables represent a considerable number of 
predefined traits. An examination the bias indicator and its three 
factors brings the insight that the auxiliary vector should not 
necessarily contain all of the available traits; some may be 
insignificant or even harmful for the objective of bias reduction. One 
is led to a selection of influential traits, rather than to a selection of 
entire categorical variables. We illustrate this by numerical 
examples. We outline a stepwise forward selection procedure for the 
search for influential traits. 

Key words: Calibration, nonresponse adjustment, nonresponse bias, 
auxiliary variables, administrative registers, bias indicator. 
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1 The calibration estimator for a  
survey with nonresponse 

The literature is rich in contributions that examine different aspects 
of estimation in the presence of survey nonresponse. Examples 
during the last decade include Beaumont (2005); Crouse and Kott 
(2004), Deville (2002), Kott (2006, 2008). A central question is the 
reduction of the bias that the nonresponse causes in the estimates. 
Increased variance can also an issue;  the balance between variance 
increase and bias reduction is considered for example in Little and 
Vartivarian (2005). 

This paper is devoted to a study of nonresponse bias. We wish to 
reduce that bias as much as possible; the variance aspect is not 
considered. A justification is that the squared bias is often the 
dominant component of the Mean Squared Error. We assume that 
the sample size is quite large, as is typically the case in government 
surveys; consequently, variance is quite low. 

The bias cannot be estimated. Instead we need methods capable of 
signaling when an effective reduction of the unknown bias has taken 
place, but without assurance that the bias is reduced to near-zero 
levels. This point of view is held in recent articles. The issue is one of 
selecting auxiliary variables likely to be effective for reducing bias. 
Särndal and Lundström (2005) propose two bias indicators; 
extensions of that work is reported in Särndal and Lundström (2008, 
2010). An alternative bias indicator, with somewhat different 
motivation and derivation but with the same general purpose, is 
proposed in Schouten (2007). 

It is traditionally argued that the chosen auxiliary vector should 
meet the objectives (i) to explain the nonresponse mechanism and 
more particularly its (unknown) response probabilities, and/or (ii) 
to explain the study variable  y. These are ideals, never satisfied in 
practice. The best one can hope for is a partial fulfillment of one or 
the other objective. Moreover, the two objectives interact. An 
efficient nonresponse adjustment requires both objectives to be 
satisfied to a significant extent, not just one of them. This fact 
becomes clear from the analysis in this paper. We propose a 
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statistical indicator, computable on the data for respondents, helpful 
in showing that partial fulfillment is achieved. 

We work in an environment where many alternative auxiliary 
vectors kx  can be constructed. The objective is to build the vector 

kx  from a supply of auxiliary variables so that prospects are good 
for small bias in the survey estimates. To guide the process we use 
the bias indicator A∆  introduced in Section 3. The different forms of 

auxiliary information are discussed in Section 2. The indicator A∆  
has a telling expression in terms of three simple factors, as explained 
in Section 4. Sections 5, 6 and 7 prove the statistical properties 
claimed for each factor. Sections 8 to 11 focus on an application that 
is especially important in statistical agencies: The case of categorical 
auxiliary variables. It is emphasized that all the categories, or traits, 
that define an available categorical variable such as “Age”  need not 
(and ordinarily should not) be retained. Hence we outline in 
Sections 8 to 11 a process that focuses on the selection of influential 
traits, rather than on a selection of complete categorical auxiliary 
variables. 

We consider a finite population },...,,...,2,1{ NkU = . A probability 
sample s  is drawn. Nonresponse occurs: a response set  r  is 
realized as a subset of s . We have  rsU ⊃⊃ . The values ky of the 

study variable y are observed only for the units rk ∈ . Those data on 
y, together with auxiliary data, form the material for estimating the 
population y-total ∑= U kyY . 

The sample s  is drawn with a sampling design that gives unit  k  the 
known inclusion probability 0π >k . The known design weight of k 

is kkd 1/π= . The (design-weighted) response rate is   

∑ ∑=
r s kk ddP /      (1.1) 

 

The auxiliary vector value ),...,,...,( 1 ′= Jkjkkk xxxx  is available for 

sk ∈ , where jkx  is the value for unit k of the j:th auxiliary variable, 

jx . We examine the calibration estimator given by 

=CALY~  ∑r kkk ymd     ;     kr kkks kkk ddm xxxx 1)()( −∑∑ ′′=   (1.2)  
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The adjustment factor km  is computable for sk ∈ , but used in the 

estimator only for rk ∈ . The weights are calibrated to fulfill 

kr s kkkk dmd xx∑ ∑=     (1.3) 

 

Equivalently we can write =CALY~  ∑ ′
s kkd xBx )( with 

∑∑ −′=
r kkkr kkk ydd )()( 1 xxxB x   (1.4)  

which can be seen as the result of a weighted least squares 
regression fit: The vector B  that minimizes 2)( Bxkkr k yd ′−∑  is 

xBB = . Each vector specification kx  generates a different 

calibration estimator CALY~ . However, CALY~  is not without bias, not 

even for the best among the available choices of kx . 
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2 The auxiliary information 
The availability of potent auxiliary variables varies between 
countries. Surveys in the Scandinavian countries rely on rich sources 
of auxiliary data, derived from numerous administrative registers. 
Auxiliary information exists at two levels: at the population level, 
transmitted by a vector denoted ∗

kx  , and/or at the sample level, 

transmitted by a vector 
kx . Both are known vector values for sk ∈ , 

that is, for respondents as well as for nonrespondents. The 
population total ∑ ∗

U kx  is known; by contrast, ∑U k
x  is unknown 

but estimated without bias by ∑s kkd x . The auxiliary vector is kx =








 ∗


k

k

x
x

. Behind the estimator CALY~  given by (1.2) lies the calibration 

equation 









=
∑
∑∑

∗


ks k

s kk
r kkk d

xd
md

x
x . In order to benefit from the 

potential for reduced variance when ∑ ∗
U kx  is a known population 

total, one can alternatively determine calibrated weights kw to fulfill 

instead 









==
∑
∑∑

∗


ks k

U k
r kk d
w

x
x

Xx  . This yields the estimator CALŶ

∑= r kk yw  with weights })({ 1
kr kkkkk ddw xxxX −∑ ′′= . They 

satisfy ∑∑ ∗∗ =
U kr kkw xx  (a known total) and 

ks kkr k dw xx ∑∑ =  

(an unbiasedly estimated total). 

As is known (see for example Särndal and Lundström (2005)), CALY~

given by (1.2) and CALŶ have the same bias to first order 
approximation. When the objective is a study of bias, as in this 

article, we are indifferent in the choice between  CALY~ and CALŶ . We 
work with the former; the weights are then calibrated to the level of 
the sample. 
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We use vectors kx  such that, for some constant vector μ  0≠ , 

1=′ kxμ  for all Uk ∈                  (2.1) 

 

It is not a severe restriction. Most vectors kx  useful in practice are of 

this kind. For example, if ),1( ′= kk xx , where kx  is a continuous 

variable value, then take )0,1( ′=μ ; if )0,...,1,...,0( ′=kx , where the 
one and only “1” codes class membership of  k, then take 

)1,...,1,...,1( ′=μ . 

We gauge CALY~  against two extremes:  One is a “worst possible 

scenario”, arising for the primitive x-vector, 1=kx , the other is the 
unrealized ideal of full response, admitting unbiased estimation. 

 

The primitive vector, 1=kx  for all  k , gives Pmk /1= for all k, so 

CALY~  becomes the exp

drkr kEXP yNydPY ;
ˆ)/1(~ == ∑

ansion estimator  

                (2.2) 

where ∑= s kdN̂ , which is unbiased for N.  The bias of EXPY~  can be 

large, compared with an alternative CALY~  based on a much stronger 
auxiliary vector. (If the population size N were known and to 

replace N̂ in (2.2), the asymptotic bias would be the same.)  

 

A comment on the notation: When needed for clarity and emphasis, 
means and other quantities are given two indices separated by a 
semi-colon. The first shows the set of units in the summation(s), the 
second, following the semi-colon, shows the weighting used, as in

∑∑= r kkr kdr dydy /; . If the weighting is uniform, the second 

index is dropped, as in Nyy
U kU /∑= . 
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3 The bias indicator 
We consider CALY~  and EXPY~  given by (1.2) and (2.2) and form the 

statistic =∆ A NYY CALEXP
ˆ/)~~( − , called the bias indicator. It is used as a 

tool to compare different possible vectors kx  for CALY~ . Because 

AEXPCAL NYNY ∆−= ˆ/~ˆ/~
, we interpret A∆  as the distance travelled 

from the initial crude mean estimate, =EXPUy ,
ˆ NYEXP

ˆ/~
, to a better 

alternative, =CALUy ,
ˆ NYCAL

ˆ/~
, likely to have less nonresponse bias 

because based on a more powerful auxiliary vector than the trivial 
1=kx . Given the data kx for sk ∈  and ky  for rk ∈ , A∆  can be 

routinely computed, along with other summary survey results, such 
as the nonresponse rate P given by (1.1) and the coefficient of 
determination for the regression of y on x, denoted later in the paper 
as 2

xyR .  

 

The case of full response (where ky  is available for all sk ∈ ) 
represents an unrealized ideal that makes unbiased estimation 
possible. One possibility for full response is the unbiased Horvitz-
Thompson estimator 

dsks kFUL yNydY ;
ˆ~ ==∑                   (3.1) 

 

In the presence of auxiliary information, a more variance efficient 
(and nearly unbiased) alternative for full response is 

ks kFUL ywY ∑=*~
, where }{ 1)( ks kkkkk ddw xxxX −∑ ′= ′ , with 

∗= kk xx  (such that 1=′ ∗
kxμ  for all  k) and a known population total 

∑ ∗=
U kxX . As long as FULY~  represents an essentially unbiased full 

response estimator, we need not further specify its form in this 
paper, where the main objective is the study of bias. 
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For an alternative perspective, we view the three estimates  CALY~ , 

EXPY~  and FULY~ , computed for a given outcome ),( rs , as three points 

on a horizontal axis, and A∆  as one out of three distances of interest: 

T∆  = NYY FULEXP
ˆ/)~~( − , which would be an estimate of bias under 

the worst possible scenario 1=kx , R∆ = NYY FULCAL
ˆ/)~~( −  , which 

would be an estimate of the bias that still remains in CALY~  even with 

a better choice of kx , and A∆ = NYY CALEXP
ˆ/)~~( − , which is 

computable, in contrast to T∆ and R∆ . Then ATR ∆−∆=∆ , where 
the index T suggests “total”, A “accomplished” or “accounted for”, 
and R “remainder”.  Given ),( rs ,  T∆ is an unknown (positive or 

negative) constant, not affected by the choice of kx . For a succession 

of improved kx -vectors, CALY~ will distance itself (in the positive or 

the negative direction) from EXPY~ ; A∆  increases. For a highly 

effective vector kx , CALY~  will come near FULY~ , leaving a small 

remainder R∆ . We note that 0=∆ R  for the (never existing) perfect 

relationship βx kky ′=  for all rk ∈ . There is, however, no guarantee 

that all choices of kx  will create an CALY~  lying between EXPY~  and 

FULY~ . Whether it does or not is unknown to the statistician/analyst, 

as is the size of R∆ , so A∆  is an indicator of bias, not a quantifier of 
bias. 

 

The statistic A∆  is suggested here as one possible tool in comparing 
potential x-vectors and for identifying efficient auxiliary variables 
for the vector. If A∆ is greater for the vector kk 1xx =  than for the 

alternative kk 2xx = , it signals a preference for basing the calibration 

estimator CALY~  on k1x . More generally, we should choose kx  to 

make A∆  large, because it is likely (but not guaranteed) that CALY~

based on this choice lies closer to the unbiased estimator.  
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4 Factoring the bias indicator 
We express A∆  and related quantities in matrix language. Define 

dsdr ;; xxD −=  ; ∑∑ −−=
r kdrr kdrkk dyyd )/()(( )( ;;xxC  ; 

∑∑ ′=
r kr kkk dd /xxΣ  (4.1) 

where the means are  

∑∑= r kr kkdr dydy /;  ;  ∑∑= r kr kkdr dd /; xx  ;  

∑∑= s ks kkds dd /; xx  

 

Here ),...,,...,( 1 ′= Jj DDDD , where dsjdrjj xxD ;; −=  measures 

what may be called a lack of balance, or a lack of representativity, in 

the variable jx : When jD  is large, the mean of the respondents, 

∑∑= r kr jkkdrj dxdx /; , is far from the mean of all those sampled, 

∑∑= s ks jkkdsj dxdx /; . The component jC  of 

),...,,...,( 1 ′= Jj CCCC is the (positive or negative) covariance 

between jx  and the study variable y, 

∑ ∑−−==
r r kdrkdrjjkkjj dyyxxdyxCovC /))((),( ;;    (4.2) 

 

Finally, Σ  is a JJ × weighting matrix, assumed non-singular. By 
(2.2) we have the properties 

xBx drdry ;; ′=    ;    1;
1

;;
1

; =′=′ −−
dsdrdrdr xΣxxΣx    (4.3) 

 

Result 4.1:   We can express A∆ as a bilinear form in the vectors D  
and C : 

=−=∆ NYY CALEXPA
ˆ/)~~(  CΣD 1−′    (4.4) 
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Proof =NYEXP
ˆ/~

.  We have  =dry ; xBx dr ;′  by the first part of (4.3),  

=NYCAL
ˆ/~

xBx ds;′  by (2.1) and therefore  =∆ A xBD′  . By the second 

part of (4.3), xBD′  = CΣD 1−′ , proving (4.4).  � 

 

It is convenient to measure A∆  in standard deviations. Let 

22
;

2
; /)( yr kdrkr kdry SdyydS =−= ∑∑  

 

The simpler notation 2
yS will be used. We write yA S/∆  as a product 

of three easily interpreted factors: 

=
×
−

=
∆

y

CALEXP

y

A

SN
YY

S ˆ

~~
  DCym RRcv ×× x      (4.5) 

where 

2/11 )( DΣD −′=mcv   ;  
y

y S
R

2/11 )( CΣC
x

−′
=   ;  

2/112/11

1

)()( CΣCDΣD
CΣD

−−

−

′′
′

=DCR  

The notation is suggestive: mcv=′ − 2/11 )( DΣD   is the coefficient of 

variation of the weight adjustment factors km , 221 / xCΣC yy RS =′ −  is 

the coefficient of determination (the proportion of variance 
explained) for the multiple regression fit of ky  on kx , rk ∈ , and 

21121 )()/()( DCR=′′′ −−− CΣCDΣDCΣD  is the coefficient of 
determination for the fit of a weighted regression through the origin 
of jD  on jC , Jj ...,,2,1= . These properties of the three factors are 

proved in the following sections. It follows that 10 ≤≤ xyR , 

11 ≤≤− DCR , and a typical range for the first factor is 

8.01.0 ≤≤ mcv . The factorization (4.5) was introduced in Särndal 
and Lundström (2010). The factors and their role are examined more 
completely and rigorously in this paper. 
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In constructing the x-vector, we need to examine the progression of 
the values of the three factors when the vector dimension  J  
increases as a result of the inclusion of more and more x-variables. 
At the outset, J = 1, 1=kx , and 0=∆== Aym Rcv x , while DCR  is 

undefined.  The case J = 2 requires a closer examination; we then 
have ),1( ′= kk xx  where the entering variable kx  is continuous or 
categorical (0-1). Then  

xdsdrm Sxxcv /;; −=     ,    yxy RR =x    ,    1±=DCR  

where ∑∑ −= −
r drkkr kx xxddS 2

;
12 )()( and =yxR yx SSyxCov /),( . 

The sign of DCR  depends on whether dsdr xx ;; −  has the same sign or 

not as the product moment correlation coefficient  yxR . We have  

yx
x

dsdr

y

A R
S

xx
S

×
−

=
∆ ;;  

Consequently, the nonresponse adjustment brings 

−= NYNY EXPCAL
ˆ/~ˆ/~

yx
x

dsdr
y R

S
xx

S ×
−

× ;;   (4.6) 

Both xdsdr Sxx /;; −  and yxR  need to be distinctly non-zero in order 

for the adjustment effect to be important. A high correlation yxR  = 

0.9 is in itself of little interest if accompanied by a low value of the 

imbalance such as xdsdr Sxx /;; −  = 0.1. This x-variable brings the 

adjustment yA S09.0=∆ , relatively modest compared with another 

x-variable for which both factors equal, say, 0.5, which would bring 
the more pronounced adjustment yA S25.0=∆ . 

 

In practice the dimension of the x-vector is often quite large; not 
uncommonly 30>J , or greater. To illustrate (4.5) with fairly 
typical numbers, suppose 6.0=mcv , 5.0=xyR  and 6.0=DCR . Then 

18.0/ =∆ yA S , and yEXPCAL SNYNY 18.0ˆ/~ˆ/~ −= . Hence the crude 

estimate NYEXP
ˆ/~

 undergoes an downward adjustment of 0.18 
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standard deviations to arrive at  NYCAL
ˆ/~

. Although that adjustment 
may appear modest, it should be gauged against a reference such as 
the standard deviation of an estimated y-mean in a typical large 
survey. For example, with m = 10,000 respondents, the standard 
deviation of the estimated mean under simple random sampling 
(and random nonresponse) is in the neighbourhood of

yy SmS 01.0/ =  (or less, if efficient auxiliary information is used); 

by comparison, yA S18.0=∆  is large, implying a mean squared 

error dominated totally by the squared bias component. A 

confidence interval centered on NYEXP
ˆ/~

 is completely invalid. But 

NYCAL
ˆ/~

 in (4.6) is likely to be considerably less biased. A step has 
been taken in the right direction. Whether the adjustment comes 
close to completely eliminating the bias remains unknown. 
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5 The first factor 
Result 5.1.  The first factor of the decomposition (4.5), 2/11 )( DΣD −′ , 
is the coefficient of variation (standard deviation divided by mean), 
computed for rk ∈ , of the weight adjustment factors 

kr kkks kkk ddm xxxx 1)()( −∑∑ ′′=  that appear in =CALY~  ∑r kkk ymd  . 

 

Proof km. The factor  is computable for sk ∈ .  Two  weighted  
means are of interest: 

)/()(; ∑∑=
r kkr kdr dmdm  and  )/()(; ∑∑=

s kks kds dmdm . A 

development making use of (2.1) shows that 

Pm dr /1; =     ;     =dsm ; dsdsP ;
1

;)/1( xΣx −′     (5.1) 

where  P is the response rate  (1.1). The weighted variance of km over 
the response set is 

22
;

2
; )(1

mdrkr k
r k

drm Smmd
d

S =−= ∑∑
   (5.2) 

 

The simpler notation 2
mS  will be used. Using that 

ks kkr k mdmd ∑∑ =2  we get 2
mS )( ;;; drdsdr mmm −= . It follows that 

drds mm ;; ≥  for any outcome ),( rs . The coefficient of variation of km  

for rk ∈  is 

dr

m
m m

Scv
;

=  1
;

; −=
dr

ds

m
m

      (5.3) 

 

Using (5.1) and the second part of (4.3) we complete the proof by 
noting that 

=2
mcv =−′ − 1;

1
; dsds xΣx DΣDxxΣxx 1

;;
1

;; )()( −− ′=−′− dsdrdsdr  � (5.4)  
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Comment 5.1. Result 5.1 expresses DΣD 12 −′=mcv  as a quadratic 

form in the vector ),...,,...,( 1 ′= Jj DDDD , where dsjdrjj xxD ;; −=

measures the lack of balance in the variable jx . A large jD  may or 

may not be harmful in the sense “causing large bias”. The issue 
depends, as seen more clearly later, on the size of the matching 
component jC  of ),...,,...,( 1 ′= Jj CCCC . The value of 

DΣD 12 −′=mcv  increases (or possibly stays the same) when further x-

variables are added to the auxiliary vector kx .  

Comment 5.2. Can one claim that it is desirable to choose the x-
vector so that the variance 2

mS 22 / Pcvm=  of the weight factors km is 
large? An argument in the affirmative is linked to the degree to 
which kx  explains the response mechanism, more specifically the 

inverse of the response probability denoted kθ . The theoretical 

weight factors kk θ/1=φ  would, if known, make ∑r kkk yd φ

unbiased for ∑= U kyY . Predictors of the kφ can be derived by 

seeking λ  to minimize the sum of squares 2)(θ∑ ′−
U kkk xλφ . The 

optimal predictions are 

kkU kkkU kkk M=′′=′= −∑∑ xxxxxλ 1)θ()(ˆφ̂ , say. The total 

variance of the kφ , =2
θ;USφ ∑∑ −

U kU Ukk θ/)(θ 2
θ;φφ , is 

decomposed as =2
θ;USφ

2
θ;

2
θ; UresUM SS + , where the component 

“variance explained by kx ” is ∑∑ −=
U kU UkkUM MMS θ/)(θ 2

θ;
2

θ;

, and ∑∑ −=
U kU kkkUres MS θ/)(θ 22

θ; φ . A desirable choice of kx  is 

one that yields a large component of variance explained, 2
θ;UMS . The 

latter contains unknown population quantities; we replace those by 
their analogues computed on data for respondents: kM  becomes 

km , and 2
θ;UMS  becomes 2

mS , and the case can be made that it is 

desirable to choose kx  to make the weight factor variance 2
mS  = 

21 / PDΣD −′  large. 
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 6 The second factor 
Result 6.1. The factor yS/)( 2/11CΣC −′  in (4.5) is the coefficient of 

multiple correlation between ky  and kx . Hence, 221 / xCΣC yy RS =′ −  

is the coefficient of determination for the multiple regression fit of 

ky  on kx  for rk ∈ . 

 

Proof

xBxkky ′=ˆ
.  The regression fit of  y  on  x gives for unit  k  the predicted 

value , where xB  is given by (1.4). Out of the total 

variance 2
yS  of  y, the component of variance explained is 

∑∑ −
r kdrkr k dyyd /)ˆ( 2

;  = 2
;)/()ˆ( drr kkkr k ydyyd −∑∑  = CΣC 1−′  , 

where we have used (2.1) and (4.3). Hence the ratio of explained-to-
total variance (the coefficient of determination) is 

2212
;

2
; /)()(/)ˆ( xCΣC yydrkr kdrkr k RSyydyyd =′=−− −∑∑  � (6.1) 

 

Comment 6.1: Result 6.1 shows 221
yy SR ×=′ −

xCΣC  as a quadratic 

form in the covariance vector ),...,,...,( 1 ′= Jj CCCC , where jC  is 

given by (4.2). A value of, say, 9.02 =xyR  indicates a strong 

regression relationship between x and y, but is in itself insufficient to 
bring about a large value A∆ , because 2

xyR  is only one of three 

contributing factors. This begs the question: What is the value and 
the importance of “an improved fit” of kkky ε+′= βx ? The question 

has two aspects: (i) the values ky  are viewed as fixed constants (as 
they are for a given finite population), while the x-vector expands, 
through an inclusion of additional x-variables, and (ii) the 
composition of the x-vector is fixed, but the ky -values change in a 
direction of smaller regression residuals. It is fitting in both cases to 
use the term “improved fit” to mean that the residual variance 

∑∑=
r kr kke dedS )/()( 22  decreases, where kkk yye ˆ−= = xBx kky ′−  
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with xB  given by (1.4). Then 22
ˆ

2
eyy SSS += , where 

CΣC 12
;

2
ˆ /)ˆˆ( −′=−= ∑∑ r kr drkky dyydS . 

 

In the aspect (i), we have 2
,xyR 22 /1 ye SS−= , where 2

yS  is a constant 

since the ky -values do not change. The enlargement of the x-vector 

brings a decrease in 2
eS  and an increase in 2

,xyR . It will also increase 
2
mcv DΣD 1−′= .  If many efficient variables are admitted into the x-

vector, 2
,xyR  may come near unity. Thus in the aspect (i), “improved 

fit” entails an increase both in the first factor, 2
mcv , and in the second 

factor, 2
,xyR . However, the effect on the third factor, 2

DCR  , is 

unpredictable; it can change in either direction. 

 

Consider now the aspect (ii). The x-vector is made up of a fixed set 
of x-variables with fixed values. The y-values undergo change so 
that the residuals kkk eyy =− ˆ  become progressively smaller. We 

have 2
,xyR )]/([1 212

ee SS +′−= − CΣC . The improved fit (the reduced 

2
eS ) leaves CΣC 1−′  unchanged, so 2

,xyR  increases. The factors 2
mcv

DΣD 1−′=  and  2
DCR  are also unchanged. Thus in the aspect (ii), 

“improved fit” entails an increase in the factor 2
,xyR  but a status quo 

in the factors 2
mcv DΣD 1−′=  and 2

DCR . In the unlikely event of 

“perfect fit”, then 0=ke  for all rk ∈ , so 12
, =xyR , but despite this, 

=∆ yA S/ DCym RRcv ×× x   may not reach a particularly large 

value. 
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7 The third factor 
Result 7.1. The square of the third factor in (4.5),

))(/()( 1121 CΣCDΣDCΣD −−− ′′′ , is the coefficient of determination 
(the proportion of variance explained) in the fit of a (weighted) 
regression through the origin of jD  on jC , Jj ...,,2,1= , which are 

components of ),...,,...,( 1 ′= Jj DDDD and ),...,,...,( 1 ′= Jj CCCC , 

respectively. 

 

Proof DΣD 1−′. Consider the quadratic form  as a measure of total 
variability of the jD  , to be decomposed as a sum of an explained 

component and a residual component. To the data points ),( jj CD , 

Jj ...,,2,1= , fit a weighted simple regression through the origin, 

jjj ECKD +×=     

where the slope  K  is to be determined. Let ),...,,...,( 1 ′= Jj EEEE . 

A weighted least squares minimization of 
)()( 11 CDΣCDEΣE KK −′−=′ −−  gives oKK = , where 

)/()( 11
o CΣCCΣD −− ′′=K  

 

The resulting minimum value of the residual component is 

)()()( 12
o

1
o

1
o CΣCDΣDCDΣCD −−− ′−′=−′− KKK   (7.1) 

where )( 12
o CΣC −′K is the explained component. Thus the ratio of 

explained variability to total variability (the coefficient of 
determination) is  

21121112
o ))(/()()/()( DCRK =′′′=′′ −−−−− CΣCDΣDCΣDDΣDCΣC � (7.2) 
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Comment 7.1:  Although both xyR  and DCR  are correlation 

coefficients, their interpretations are quite different. The former is a 
measure, for the responding units rk ∈ , of the degree of relationship 
between the study variable ky  and the auxiliary vector kx . By 

contrast, DCR  is a measure, for the participating auxiliary variables 
Jj ...,,1= , of the degree of relationship between the lack of balance 

jD and the covariance jC = ),( yxCov j . While xyR  increases as more 

x-variables enter into kx , DCR  may not have this property when J  

increases; it may decrease. 

 

The factor })()/{()( 2/112/111 CΣCDΣDCΣD −−− ′′′=DCR  can be 
interpreted as a measure of proportionality between the lack of 
balance jD dsjdrj xx ;; −=  and the covariance jC

yxxyj SSRxyCov
jj
××== ,),( . For a fixed y-variable, and a fixed 

dimension J of kx , the maximum value, 12 =DCR , would be attained 

if the proportionality CD ×= A holds for some constant A . Let

ySAA ×=0 ; then 12 =DCR  holds if the standardized lack of balance 

for the variable jx  is proportional to that auxiliary variable’s 

correlation with the study variable  y: 

j

j

xy
x

dsjdrj RA
S

xx
,0

;; ×=
−

 ;   j = 1, …, J   (7.3) 

We can also interpret })()/{()( 2/112/111 CΣCDΣDCΣD −−− ′′′=DCR  as 
the cosine of the angle (in J-dimensional space) between the vectors 
D  and C . When the dimension J  increases, the angle normally 
grows wider and DCR  decreases. If the perfect proportionality, 

CD ×= A , holds for some constant A , then the angle is zero, and 

12 =DCR . 
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At the heart of the matter of achieving an important adjustment A∆  

lies the progression in the value of 2
DCR  when more and more 

variables are allowed into kx . For  J = 2 we have ),1( ′= kk xx and 

12 =DCR , whatever the entering variable kx . In practice, the 

dimension  J  of  kx   may be considerable, say  J > 30 or more. We 
may then be far from attaining the proportionality (7.3). A higher 
dimension  J  will normally cause a lower value of 2

DCR . As the 

vector kx expands, 2
DCR  has a tendency to decrease, as a result of an 

increased scatter of the J  points ),( jj CD , Jj ...,,2,1= . We prefer a 

set of auxiliary variables that produces a small scatter around the 
fitted line through the origin. 

 

In summary, extending the dimension  J  of the x-vector by the 
addition of further x-variables affects the value of =∆ yA S/

DCym RRcv ×× x  in the following manner: mcv  and xyR will 

increase, but DCR  is likely to decrease from its maximum 1=DCR  

when  J = 2. The increase in the first two may more than offset the 
decrease in DCR , so that yA S/∆  increases. However, this is not 

always so; yA S/∆ may start to decrease because of a pronounced 

drop in DCR . Thus a reversal may occur in the value of A∆ , when 

the increases in mcv  and xyR  are insufficient to offset a decrease in 

DCR , with a decrease in yA S/∆  as a result. 
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8 A single categorical auxiliary  
 variable 
In the preceding theory, the auxiliary variables can be continuous or 
categorical. We now examine the important case of a single 
categorical auxiliary variable defined by a set of mutually exclusive 
and exhaustive traits or properties. We shall use the former term. 
For example, the variable Age may be defined by three traits: 
Young, Middle-aged and Elderly. A set of units sharing the same 
trait is called a trait group, or simply a group.  

 

Suppose the auxiliary vector is defined initially by a total of totJ  
traits. (In the final analysis we may not keep all.) The auxiliary 
vector kx ),...,,...,( 1 ′= kJjkk tot

γγγ  codes the trait of unit k , where 

1=jkγ  if  k  has the trait j , and 0=jkγ  otherwise, totJj ,...,1= . 

That is, the vector is of the form )0,...,1,...,0( ′=kx  with a single 

entry “1”. Let js  be the subset of the sample s  consisting of the 

units k with the trait j. Its size is random, unless that trait group was 
designated as a stratum in the probability sampling design. The 
responding subset of js  is denoted  jr . For trait j, define also the 

following weighted quantities: ∑=
js kj dN̂  (an unbiased estimator 

of the population group count jN ), NNQ jsj
ˆ/ˆ=  (the trait group 

size as a proportion of the full sample), ∑∑= r kr krj ddQ
j

/  (the 

proportion of the whole response set),  ∑=
jr jkj NdP ˆ/  (the 

response rate), and ∑∑=
jjj r kr kkdr dydy /; (the study variable 

mean for respondents).   Here N̂ and dry ;  are defined as before by 

(2.2). Then the adjustment A∆  that we seek to make large in 
absolute value can be written as 

CΣD 1−′=∆ A ∑
=

−−=
tot

j

J

j
drdrsjrj yyQQ

1
;; ))((  = ∑

=

totJ

j
Ajdr Hy

1
;   (8.1)  
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where 

dr

drdrj
sjAj y

yy

P
PP

QH j

;

;; −
×

−
×=     (8.2) 

 

Starting from the crude estimator =EXPUy ,
ˆ

drEXP yNY ;
ˆ/~ =  of 

∑= U kU Nyy / ,  the adjustment brings the improved estimator  

=CALUy ,
ˆ

AEXPUy ∆−,
ˆ , that is,  

=CALUy ,
ˆ )1(

1
; ∑

=

−
totJ

j
Ajdr Hy              (8.3) 

which also has a more familiar expression, commonly referred to in  
the literature as the Weighting Class estimator, 

CALUy ,
ˆ  = =WCUy ,

ˆ ∑
=

−
tot

j

J

j
drj yNN

1
;

1 ˆˆ              (8.4) 

 

Although a very simple application of the general procedure, it has 
drawn much attention in the literature. It is usually taken for 
granted that the categorical auxiliary variable be used “as is”, with 
all of its  totJ   predefined traits. The question whether all traits are 
worth keeping is seldom if ever raised. But the form (8.3) prompts 
the question, because it puts the emphasis on the contribution of 
each particular trait to a desired departure from the crude estimate 

dry ; . As (8.2) shows, three factors contribute to AjH , called the 

importance of the  j:th trait (coded by jkγ ), namely, the relative trait 

group size sjQ , the response relative PPPj /)( − , the respondent mean 

relative drdrdr yyy
j ;;; /)( − . All three factors need to reach significant 

levels in order to make the j:th trait important. Some of the totJ  

traits may not contribute enough to ∑
=

=
totJ

j
AjA HH

1
to be worth 

keeping. Others may be outright counterproductive.  
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We note that large group sizes sjQ  are preferable to small group 

sizes. For the most important few traits, suppose AjH  is positive, 

that is,  PPPj /)( −  and drdrdr yyy
j ;;; /)( −  have the same sign. Then 

less important traits such that these two factors are of opposite sign 
will “pull in the wrong direction” and should be relegated to a “rest 
group”, comprising all others. Therefore, under the objective to 

realize a high value of CΣD 1−′=∆ A , one may be led to keep only 

a subset consisting of  J  traits, where totJJ ≤ . Then, (8.3) and (8.4) 
become  

=CALUy ,
ˆ  )1(

1
; ∑

=

−
J

j
Ajdr Hy  = ∑

=

−
J

j
drj j

yNN
1

;
1 ˆˆ = selWCUy ,

ˆ   (8.5) 

which may be called the Selective Weighting Class estimator. 

 

We can code a J-category classification as  ),...,,,1( ,121 ′= − kJkkk γγγx  

as an alternative to kx ),...,,...,( 1 ′= Jkjkk γγγ . This substitution leaves 

DΣD 1−′ , CΣC 1−′  and CΣD 1−′  unchanged, and, as a consequence, 

mcv , xyR , DCR   and yA S/∆ = DCym RRcv ×× x  are also unchanged. 

To illustrate, a higher value of A∆  may be realized by keeping only 

2=J  out of a total of 5=totJ  traits, say, those coded by k1γ  and 

k2γ , so that the vector is ),,1( 21 ′= kkk γγx .  The other three traits, 

those coded by k3γ , k4γ  and k5γ , form the rest group. An example 
of “keeping fewer than all” is seen in the empirical section 10. 

   

The important special case 2=J   implies a dichotomy of the units: 
Those with the specified trait, defined by the sets  1s  and 1r , and 
those without it, defined by the complement sets comprising all other 
traits, 11 sss −=  and 11 rrr −= . Then  ),1( 1 ′= kk γx , where 11 =kγ  

if  k  has the given trait and 01 =kγ  otherwise. (For identical results, 

we can code the vector as ),( 21 ′= kkk γγx , where kk 12 1 γγ −=  
indicates the complement set of  “all others”.) Then (8.1) becomes 

))(( ;;11 11 drdrsrA yyQQ −−=∆  
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where dry ;1
 is the design-weighted y-mean for the complement set 1r

. Two features of the specified trait interact to create a high value of 

A∆ : (i) the proportion of respondents, 1rQ , differs markedly from 

the proportion of sampled units, 1sQ , and (ii) the mean dry ;1
 for 

respondents with the trait differs markedly from the mean dry ;1
 for 

respondents without the trait. Both differences, not just one of them, 
need to be pronounced in order to generate a high A∆ . 

 

Remark jN. If known, the population count  replaces jN̂ in (8.4). 

The estimator is then known as the Population Weighting 
Adjustment estimator. The difference in bias compared with (8.4) is 
inconsequential, but the variance may be significantly smaller. 
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9 Empirical illustration I 
We present an example in two parts, representing two different 
fictitious (but not unrealistic) data sets,  part I in this section, part  II 
in section 10. Suppose the data set I shown in Table 9.1 is the result 
of probability sampling from a large population whose size, N, may 
be of the order of several million, as in sampling from the National 
Population Register of Sweden. 

Table 9.1. Data set I, for a simple random sample of size  n = 4,000. 
Frequencies by trait group and overall, shown for responding, non-
responding and whole sample. Within parenthesis, frequency of units 
with the trait Y .  Asterisk indicates unobservable frequency 

 Trait group  

All traits 
(thereof Y) 

j = 1 
(thereof Y)  

j = 2 
(thereof Y) 

j = 3 
(thereof Y) 

Response 400 
(200) 

500 
(200) 

1500 
(400) 

2400 
(800) 

Non-
response 

1100 
( ×700 ) 

400 
( ×50 ) 

100 
( ×50 ) 

1600 
( ×800 ) 

Total 
sample 

1500 

( ×900 ) 
900 

( ×250 ) 
1600 

( ×450 ) 
4000 

( ×1600 ) 

 

To fix ideas, we may think of 3=totJ  traits of the variable Age: 
Young (j = 1), Middle-aged (j = 2) and Elderly (j = 3). The objective is 
to estimate the proportion in the population with the attribute 
denoted Y , say the use of a certain drug, expected to be more 
prevalent among the young. (To mark the distinction, we use 
“attribute” for a dichotomous study variable, and “trait” for a 
dichotomous trait indicator variable.)  

Table 9.1 shows the frequency count of persons, by trait and overall, 
broken down further into responding, non-responding and total 
sample. Shown in parenthesis is the frequency, out of those in a 
given cell, with the targeted attribute Y. The entries marked with 
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superscript  ×  are unknown to the statistician/analyst. Any 
conclusions must be based on the other numbers. 

The dichotomous study variable y has the value 1=ky  if person k 

has the attribute Y , and 0=ky otherwise. We wish to estimate the 
proportion (the prevalence) of persons with the attribute Y ,  

Nyy
U kU /∑= . The probability sample s of size 000,4=n  is 

drawn by simple random sampling, so the design weighting is 

uniform: nNdk /=  for all k, and NN =ˆ .  

High (but not unrealistically high) nonresponse occurs, at a rate 
clearly more pronounced among the young, which also have a 
higher prevalence of  Y . The primitive estimate based on the 

response set  r of size  m  is =EXPUy ,
ˆ myyNY

r krEXP //~ ∑==  = 

800/2400= 0.3333. An adjusted estimate will be  CALUy ,
ˆ   given by 

(8.5) with  2=J or 3== totJJ , and NN =ˆ . 

Some features of the data are shown in Table 9.2, with notation as 
defined at the beginning of Section 8. The analyst routinely 
computes the numbers in rows one to four as part of a nonresponse 
analysis. Considerable group differences exist, both in the  response 
rate jP  and in the prevalence 

jry of the attribute  Y  . There is strong 

incentive to adjust by age group, and to publish the Weighting Class 

estimate (8.4), =CALUy ,
ˆ NYCAL /~ ∑

=

=
3

1

ˆ)/1(
j

rj j
yNN =  0.3842.  
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Table 9.2. Data set I. Entries in the first four rows are computed by the 
analyst; those of the bottom row, marked ×, are unavailable 

 Trait group  

All traits j = 1 j = 2 j = 3 

Proportion of sample, 

sjQ  
0.3750 0.2250 0.4000 1 

Proportion of response, 

rjQ  
0.1667 0.2083 0.6250 1 

Response rate, jP  0.2667 0.5556 0.9375   P  =  0.6000 

Prevalence of  Y   in the 
response,  

jry  
0.5000 0.4000 0.2667 =ry 0.3333 

Prevalence of  Y   in the 
sample,  

jsy  

×6000.0  ×2778.0  ×2813.0  ×= 4000.0sy  

 

We turn now to some facts that are beyond the reach of the analyst, 
because of the nonresponse. They involve the entries in the bottom 
line of Table 9.2, marked with superscript ×:    

(i) If the whole sample had responded, the unbiased mean estimate 

(the prevalence of Y) would be =FULUy ,
ˆ nyyNY

s ksFUL //~ ∑==  = 

1600/4000= 0.4000, considerably higher than the primitive estimate 

computed on respondents, =EXPUy ,
ˆ =NYEXP /~ 3333.0=ry , which is 

a severe underestimation.  

(ii) In a group-by-group comparison of sampled units with 
responding units, the y-mean (the prevalence of Y) shows the 
following contrasts:  0.6000 vs. 0.5000 for 1=j ; 0.2778 vs. 0.4000 for 

2=j , and 0.2813 vs. 0.2667 for 3=j . The difference is considerable 
for 1=j  and 2=j , small for 3=j . A nearly complete elimination 
of the nonresponse error would have required the difference to be 
near zero for each trait. This is not achieved by conditioning on age 
group. Unaware of this, the analyst may venture the assumption of 
MAR (missing at random), conditional on age group. Under that 
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assumption, =CALUy ,
ˆ NYCAL /~ ∑

=

=
3

1
;

ˆ)/1(
j

drj j
yNN = 0.3842, is 

deemed an unbiased estimate. But the assumption is invalid; 0.3842 
remains far from the unbiased estimate 0.4000. This does not imply 
that Age is an inefficient auxiliary variable. On the contrary, it 
achieves an important partial although incomplete adjustment for 
bias.  

The analyst can in effect do more than the traditional nonresponse 
analysis in the first four lines of Table 9.2. He/she should start from 

the expression (8.3) for  CALUy ,
ˆ , compute for 3,2,1=j  the quantities 

AjH  given by (8.2) and thereby see the importance of each 

individual trait. The result is shown in Table 9.3. 

Table 9.3. Data set I. Analysis of trait influence. The bottom line entry

AjH  is the product of the preceding three entries 

 Trait group  

Sum j = 1 j = 2 j = 3 

sjQ  0.3750 0.2250 0.4000 1 

PPPj /)( −  -0.5556 -0.0741 0.5625  

drdrdr yyy
j ;;; /)( −  0.5000 0.2000 -0.2000  

AjH  -0.1042 -0.0033 -0.0450 
AH = -0.1525 

 

Rows 2 and 3 in Table 9.3 have weighted means equal to zero:  

0)(
3

1
=−∑

=j
jsj PPQ   ;   ∑

=

=−
3

1
0)(

j
rrrj yyQ

j
. The table shows that the 

trait 1=j  (Young) brings high values on both PPPj /−  (due to a 

low response rate) and drdrdr yyy
j ;;; /−  (due to a high prevalence of 

the attribute of interest Y). The trait 3=j  (Elderly)  is also 
important: A high response rate is paired with a rather low 
prevalence of Y. Together those two traits account for nearly all of 



Three factors to signal nonresponse bias Empirical illustration I 

Statistics Sweden 37 

∑
=

=
3

1j
AjA HH  and therefore for nearly all of the adjustment 

AdrA Hy ;=∆ ; Thus Table 9.3 informs the analyst that 1=j  and

3=j  are the critical traits, primarily accountable for the 

underestimation in the primitive estimate =EXPUy ,
ˆ 3333.0 . The trait

2=j  (Middle aged) is unimportant. The adjusted estimate by (8.3) 

is 3842.0)1525.01(3333.0)1(ˆ
, =+=− AEXPU Hy , confirming the 

result of the Weighting Class formula (8.4). 

 

The next question becomes: Are all three traits necessary? Should 
the number of traits be reduced? Table 9.4 throws some light on 
these questions. It illustrates the progression of a stepwise forward 
selection of traits. Consider the stepwise algorithm such that, in a 
given step, we enter the trait for which AdrA Hy ;=∆  has its 

highest value, where ∑
=

=
J

j
AjA HH

1
, and  J  is the dimension of the x-

vector, 3=≤ totJJ . 

At Step 0 we have the primitive vector 1=kx . At step 1, with 2=J
, the choice is between the three vectors ),1( ′= jkk γx , the entering 

variable jkγ  being the indicator of trait  j;  j = 1 or  2 or 3. If  j  is 

admitted, the union of the other two traits forms the “rest group”.  
The symbol  ∪ denotes a merger of trait groups; for example,  2∪3 
denotes the merger of j = 2 and  j = 3. The vector formulations 

),1( ′= jkk γx and ),( ′= kjjkk γγx  (where j  denotes “not-j”) are 

equivalent; they leave DΣD 1−′ , CΣD 1−′  and CΣC 1−′  invariant. 
Thus mcv , xyR and DCR  are also invariant.  
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Table 9.4. Data set I. Values of mcv , xyR  and DCR , of their product 

yA S/∆ , and of A∆ , shown for each of three steps. n.d. stands for 

“not defined”. Standard deviation 4714.0=yS  

 Step 0 Step 1 
Two trait groups 

Step 2 
Three trait groups 

1∪2∪3 1 ,  2∪3 2 , 1∪3 3 , 1∪2 1,  2,  3 

mcv  0 0.5590 0.0410 0.4648 0.5855 

xyR  0 0.1581 0.0725 0.1826 0.1937 

DCR  n.d. - 1 - 1 - 1 -0.9512 

yA S/∆  0 -0.0884 -0.0030 -0.0849 -0.1078 

A∆  0 -0.0417 -0.0014 -0.0400 -0.0508 

 

In Step 1, the largest value of A∆   is  0.0417, realized by entering  j 

= 1 (but  j = 3 is a close second). The Selective Weighting estimate 

after step 1 is thus =CALUy ,
ˆ 3750.00417.03333.0/~ =+=NYCAL , 

thereby reducing the underestimation considerably, from - 6.7% (= 
0.3333 – 0.4000)  to -2.5% (= 0.3750 – 0.4000). Table 9.4 reinforces the 
impression from Table 9.3 that  j = 2 (Middle aged) is the least 
important trait.  

Step 2 entails, in general, a selection of the trait corresponding to the 
largest value of A∆ , given the Step 1 selection. Here, there are no 

more than 3=totJ  traits, so Step 2 implies that all three become 

taken into account. We see that mcv  and xyR  increase, as they must, 

whereas DCR recedes from 1 to 0.9512. Nevertheless, A∆   increases 

from 0.0417 to 0.0508. The resulting estimate after Step 2 is therefore 

=CALUy ,
ˆ 0.3333 + 0.0508 = 0.3842, which reduces the 

underestimation to  -1.7% (= 0.3842 – 0.4000). For these data, A∆
increases in each step. This increasing pattern cannot be taken for 
granted, as the next section will illustrate. 
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10 Empirical illustration II 
Table 10.1 presents a variation on the data in Table 9.1. The two data 
sets have some similarities. The data are the same for “All traits”, for 
the distribution of the total sample on the three traits, and for the 

response in trait group j  = 1. The crude estimate remains  =EXPUy ,
ˆ

3333.0 , the unbiased (unavailable) full response estimate remains 

=FULUy ,
ˆ 4000.0 . But differences in other respects will make the 

conclusions differ considerably from those in Section 9. 

Table 10.

 

1. Data set II, for a simple random sample of size  n = 4,000. 
Frequencies by trait group and overall, shown for responding, non-
responding and whole sample 

Trait group  

All traits 
(thereof Y) 

j = 1 
(thereof Y) 

j = 2 
(thereof Y) 

j = 3 
(thereof Y) 

Response 400 
(200) 

1200 
(330) 

800 
(270) 

2400 
(800) 

Non-
response 

1100 
( ×500 ) 

400 
( ×220 ) 

100 
( ×80 ) 

1600 
( ×800 ) 

Total sample 1500 

( ×700 ) 
1600 

( ×550 ) 
900 

( ×350 ) 
4000 

( ×1600 ) 

 

Considerable trait group differences prevail in Table 10.2, for both 

jP  and 
jry . This will again lead the analyst to adjust by age group 

and to publish the Weighting Class estimate  CALUy ,
ˆ

∑
=

=
3

1
;

ˆ)/1(
j

drj j
yNN = 0.3734. This is done without assessing the 

importance of each individual trait, something which is instead 
accomplished in Table 10.3. 
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Table 10.2. Data set II. Entries in the first four row are computed by 
the analyst; those of the bottom row, marked ×,  are unavailable 

 Trait group  

All traits j = 1 j = 2 j = 3 

Proportion of sample, 

sjQ  
0.3750 0.4000 0.2250 1 

Proportion of response, 

rjQ  
0.1667 0.5000 0.3333 1 

Response rate,  jP  0.2667 0.7500 0.8889   P  =  0.6000 

Prevalence of  Y   in the 
response,  

jry  
0.5000 0.2750 0.3375 =ry 0.3333 

Prevalence of  Y   in the 
sample,  

jsy  

×4667.0  ×3438.0  ×3889.0
 

×= 4000.0sy  

 

Table 10.3 suggests that the trait  j = 1 is important (the value 
1042.01 =AH  is large by comparison) and that both j = 2  and  j = 3  

are unimportant. The numbers in the  j = 1 column coincide with 
those seen before in Table 9.3. But for  j = 2  and especially for  j = 3, 
the situation has radically changed. 

Table 10.3. Data set II. Analysis of trait influence. The bottom line 
entry AjH  is the product of the preceding three entries 

 Trait group  

Sum j = 1 j = 2 j = 3 

sjQ  0.3750 0.4000 0.2250 1 

PPPj /)( −  -0.5556 0.2500 0.4815  

drdrdr yyy
j ;;; /)( −  0.5000 -0.1750 0.0125  

AjH  -0.1042 -0.0175 0.0014 =AH -0.1203 
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Table 10.4 reinforces the message in Table 10.3 that the only 
important trait is  j = 1. The stepwise procedure will select this trait 
in Step 1; the x-vector is then ),1( 1 ′= kk γx , implying that  2∪3  

forms the rest group. The alternatives  2 , 1∪3  and  3 , 1∪2  are 
inferior for these data.  

Table 10.4. Data set  II.  Values of mcv , xyR  and DCR , of their product  

yA S/∆ , and of A∆ , shown for each of three steps. n.d. stands for 

“not defined”. Standard deviation 4714.0=yS  

 Step 0  Step 1 
Two trait groups 

Step 2 
Three trait groups 

1∪2∪3 1 ,  2∪3 2 , 1∪3 3 , 1∪2 1,  2,  3 

mcv  0 0.5590 0.2000 0.2298 0.5618 

xyR  0 0.1581 0.1237 0.0063 0.1688 

DCR  n.d. - 1 - 1 +1 -0.8969 

yA S/∆  0 -0.0884 -0.0247 0.0014 -0.0851 

A∆  0 -0.0417 -0.0117 0.0007 -0.0401 

 

Step 2 causes DCR  to drop significantly from 1 to 0.8969.  The 

modest increases in mcv and xyR are not enough to compensate, so 

A∆  drops from 0.0417 to 0.0401. Hence, these data provide an 

example of a reversal in A∆ : The use of all 3=totJ  traits does not 

yield the highest value of  A∆ . When we act by the principle to end 

when A∆  is at its highest value, ),1( 1 ′= kk γx  remains ultimate x-

vector, and the finally published Selective Weighting Class estimate 

is CALUy ,
ˆ = 0.3333 + 0.0417  = 0.3750. This is closer to the 

(unavailable) unbiased estimate of 0.4000, and thus preferred to the 
complete Weighting Class estimate 0.3734 based on all three traits 
(although the difference for these data is small). 
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11 Selecting influential traits in the 
presence of several categorical 
auxiliary variables 

The word influential is to be understood in the sense “important for 
bias reduction”. Many government surveys involve categorical 
study variables, as when one needs to estimate the number of 
persons or households with attributes defined by, for example, 
employment status, or health condition, or drug usage, or choice of 
post-secondary education. 

The auxiliary variables are often also categorical. They include 
“traditional ones” such as Sex and Age group. In Scandinavia, a 
variety of others enter into consideration: Income class, Education 
level, Presence of children, Urban versus rural dwelling, Marital 
status, Unemployment pattern, Pattern of paid sick leave, Level of 
debt, Country of birth, and many others.  

To build an effective auxiliary vector, we outline here a possible 
procedure of stepwise forward selection. We expand gradually the 
dimension of the x-vector by adding one trait at a time (rather than 
one complete auxiliary variable at a time). The procedure derives 
from the conclusions in Sections 8 to 10 where we considered one 
single categorical auxiliary variable and the selection of its most 
influential traits. Here we select from among all those defined by a 
collection of categorical auxiliary variables. 

Consider a set of  2≥I available categorical auxiliary variables, Age, 
Income class, Educational level, and so on, where the i:th variable 
has iJ  mutually exclusive and exhaustive predefined  traits, 

Ii ,...,2,1= . Usually, not all ∑
=

I

i
iJ

1

 traits are critically important. 

Some may be of marginal value, others counterproductive from the 
perspective of achieving a numerically important adjustment  A∆ . 

That is, we may prefer to use the i:th variable not in its complete 
form, but only through a selected few of its iJ  traits. That is, out of 
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the total number  ∑
=

=
I

i
itot JJ

1

of available traits, only influential 

ones will be retained for the x-vector, keeping in mind the 
decomposition =∆ yA S/  yS/1CΣD −′ = DCym RRcv ×× x .                  

 

Which traits should be retained in a stepwise construction of the x-
vector? As pointed out earlier, the value of A∆ may decrease, rather 

than increase, by adding “unnecessary” traits. Both mcv  and xyR  

increase by adding more traits, but this does not necessarily hold for 

DCR  and therefore not for A∆ . The presence in unit (person)  k  of 

the trait j  is coded 1=jkγ ; the absence is coded 0=jkγ , 

totJj ,...,2,1= . Each dichotomous trait indicator jkγ  is now viewed 

as a potential auxiliary variable.  

 

Traits are added one by one to the x-vector. A maximum number of 
IJ tot −+1  can be used. The reason is that the i:th variable is 

exhausted when 1−iJ  of its iJ  traits have been admitted, to avoid 
a singular matrix in the weight computation. The effective number 
of available traits is thus IJ tot −+1 . Consider the following 
stepwise forward selection algorithm: Include, in a given step, the 

trait identified by the highest value of CΣD 1−′=∆ A . At Step 0, the 

auxiliary vector is the primitive 1=kx , which gives == jj CD

0=∆ A . 

 

In Step 1, =∆ A CΣD 1−′  is computed for all totJ  traits available, that 

is, for all x-vectors ),1( ′= jkk γx , totJj ,...,2,1= . The trait for which 

A∆ has its largest value is selected, say the trait  j = S1,  coded by 

the dichotomous trait indicator kS1γ . 
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In Step 2, A∆ is computed for all 1−totJ  traits not yet selected, that 

is, for all three dimensional x-vectors ),,,1( 1 ′= jkkSk γγx , 

totJj ,...,2,1= , 1Sj ≠  . The trait that gives A∆  its largest value is 

selected, and so on, in the succeeding steps. 

 

The critical value of A∆  (that is, the value of A∆  that triggers the 

inclusion of the next trait), will be increasing in a number of steps 
(for a number of selected traits), until a decline in the critical value is 
likely to set in. A stopping rule that is recommended (although 
alternatives could be considered) is to end the procedure at the step 
where the decline in A∆  sets in, that is, when A∆  is no longer 

increased by the inclusion of yet another trait. In practice, one is 
then often led to use less than all the iJ  traits of the i:th categorical 
variable, but only the most influential ones, up to a maximum 
number of 1−iJ . 
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12 Concluding comments 
This paper begins on the somewhat pessimistic but nevertheless 
realistic note that the biasing effects of survey nonresponse can 
never be totally eliminated. It is recognized that : (a) although the 
bias that nonresponse causes in survey estimates cannot be 
estimated or quantified, it can be decreased by basing the estimation 
on an efficient auxiliary vector, and (b) the auxiliary vector is to be 
built by a judicious selection of efficient auxiliary variables. In 
environments such as Statistics Sweden, many auxiliary variables 
become available through the access to many administrative 
registers. The choice of “the best” among these is the responsibility 
of the statistician/analyst. Contrary to what one might initially 
expect, a use of all available auxiliary variables may not be the best 
action. Tools are needed for the selection of auxiliary variables. To 
this end we have examined the bias indicator =∆ A CΣD 1−′ , 

factorized in formula (4.5) as =∆ yA S/ DCym RRcv ×× x . The 

behavior of the factor DCR  is critical. Its value tends to drop when 
further x-variables are added to the vector, and it may drop more 
than what is compensated for by the increases in mcv and xyR . In 

particular, we studied the case where the auxiliary variables are 
categorical, each defined in terms of a given set of traits or 
properties. The construction of the auxiliary vector then presents 
itself as a selection of the most potent traits among those 
represented by the whole set of categorical auxiliary variables. We 
outlined one stepwise forward selection procedure of traits. 
Alternative procedures may have advantages; this is a topic for 
future investigation. 
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